

Escuela Politécnica Superior de Jaén

EXPERIMENTACIÓN EN FRAMEWORK
PARA REDES NEURONALES CON

DIFERENTES CONJUNTOS DE DATOS
LIDAR REALES Y SINTÉTICOS

Autor: Víctor Rodríguez Cano

Máster: Ingeniería Informática

Tutores: Rafael Jesús Segura Sánchez y Alfonso López Ruiz

Departamento: Departamento de informática

Fecha: 01/12/2024

(Página intencionalmente en blanco)

Don Rafael Jesús Segura Sánchez y Don Alfonso López Ruiz, tutores del Trabajo Fin

de Máster titulado: ‘Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos’, que presenta Don Víctor

Rodríguez Cano, otorgan el visto bueno para su entrega y defensa en la Escuela

Politécnica Superior de Jaén.

Jaén, Diciembre de 2024

El alumno: Los tutores:

Víctor Rodríguez Cano Rafael Jesús Segura Sánchez

Alfonso López Ruiz

(Página intencionalmente en blanco)

Agradecimientos

Desde aquí aprovecho para envíar mis agradecimientos a todos aquellos que

estuvieron a mi lado a lo largo de estos años, empezando por mis padres y a toda mi

familia. Siempre habeis estado ahí apoyándome incondicionalmente y es por ello que

he podido alcanzar este punto en mi vida.

A todos mis amigos, tanto a los más antiguos como a aquellos que conocí más

recientemente. Siempre es un gusto estar con vosotros, pasando mi tiempo libre y en

ocasiones no tan libre, porque sin vosotros siento que la vida pierde todo su color.

Muy agradecido también con mis compañeros de laboratorio a los que nunca

rechacé un buen desayuno para olvidarnos de las penurias en las que nuestros

proyectos se veían inmersos. Aunque solo hayan sido unos meses, me ha encantado

trabajar con vosotros y sin duda ha sido una experiencia inolvidable en la que espero

que lo único malo en todo ese tiempo hayan sido las impresiones 3D fallidas en caliza.

Finalmente, quiero agradecer a los profesores de la Universidad de Jaén que

coincidieron conmigo de alguna manera, haciendo mención especial a mis tutores,

Rafa y Alfonso, así como también a Carlos por haberme acompañado a lo largo de

estos meses de investigación. Gracias por haberme ayudado a lo largo de estos

meses, respondiéndome todas aquellas dudas e inquietudes que surgían.

FICHA DEL TRABAJO FIN DE TÍTULO

Titulación Máster en Ingeniería Informática

Modalidad Trabajo Teórico/Experimental

Idioma Español

Tipo Específico

TFT en equipo No

Autor/a Víctor Rodríguez Cano

Fecha de asignación 18/11/2024

Descripción corta A día de hoy el aprendizaje automático está aplicándose
dentro de muchos sectores para resolver una infinidad de
problemas de ingeniería, arquitectura, medicina, arqueología,
geomática, etc. Sin embargo, el entrenamiento de estos
modelos de aprendizaje automático requiere de una gran
cantidad de datos correctamente procesados y etiquetados.

Esta investigación tendrá como objetivo reducir este problema
en el contexto de entornos urbanos, combinando el uso de
nubes de puntos LiDAR (Laser Detection and Ranging) reales
y sintéticas. Para ello se proponen 2 hipótesis iniciales que se
tratarán de validar:

1) El comportamiento de las redes obtenido a partir de un
entrenamiento y testeo con nubes de puntos sintéticas
generadas con el LiDAR virtual es similar al obtenido a partir
de nubes de puntos reales.

2) El entrenamiento de las redes neuronales con nubes de
puntos reales puede ser sustituido con un entrenamiento
alimentado con datos completamente sintéticos, dando
buenos resultados en el testeo con nubes de puntos reales.

Entre los puntos más destacados, se abarcarán desafíos tales
como la generación procedural de fragmentos de ciudades
etiquetadas, la aplicación de un simulador LiDAR para la
creación de un dataset sintético y la experimentación
siguiendo el proceso Knowledge Discovery in Databases
(KDD) con múltiples redes neuronales: PointNet++, Point
Transformer y RepSurf.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 7

NORMAS APLICADAS EN ESTE DOCUMENTO

LOCALES

TFT-UJA:2017

Normativa de Trabajos Fin de Grado, Fin de Máster y otros

Trabajos Fin de Título de la Universidad de Jaén

(Normativa marco UJA aprobada en Consejo de Gobierno)

TFT-EPSJ:2017

Normativa sobre Trabajos Fin de Grado y Fin de Máster en la

Escuela Politécnica Superior de Jaén

(Normativa EPSJ aprobada en Junta de Escuela)

TFT-EPSJ
Criterios de evaluación y normas de estilo para TFG y TFM de

la Escuela Politécnica Superior de Jaén

NACIONALES E INTERNACIONALES

ISO 2145:1978
Documentación - Numeración de divisiones y subdivisiones en

documentos escritos

UNE 50132:1994 Traducción de la ISO 2145

APA 6ª edición
Estilo de referencias y citas de APA (American Psychological

Association)

NORMAS UTILIZADAS COMO BASE O REFERENCIA

NACIONALES

UNE 157001:2014
Criterios generales para la elaboración formal de los

documentos que constituyen un proyecto técnico

UNE 157801:2007
Criterios generales para la elaboración de proyectos de

sistemas de información

Estas normas se han utilizado como base o referencia para la inclusión de algunos contenidos y

definiciones sobre elaboración de proyectos, entendiendo como proyecto la documentación

consensuada entre una empresa y un cliente, que da lugar al perfeccionamiento de un contrato

para la elaboración de una obra o la prestación de un servicio. Por consiguiente, no debe

esperarse la aplicación de estas normas en cuanto a la completitud de los contenidos ni a la

organización de los mismos.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 8

Contenido

1 Introducción ... 16

1.1 Motivación..16
1.2 Objetivos del proyecto ..17

1.3 Estructuración de la memoria ...18

2 Antecedentes y estado del arte .. 19

2.1 Generación procedural de ciudades sintéticas ..19
2.1.1 Sistemas de reglas y L-System ..19

2.1.2 Diagramas de Voronoi..21
2.1.3 Sistemas multiagente ...22
2.1.4 Funciones de colisión de ondas ...22

2.2 Conjuntos de datos LiDAR para entornos urbanos ...23
2.2.1 Dataset Semantic3D ..23
2.2.2 Dataset Semantic KITTI ...24

2.2.3 Dataset Paris-Lille-3D ..24
2.2.4 Dataset DublinCity ...25
2.2.5 Dataset Toronto-3D..26

2.3 Redes neuronales artificiales para nubes de puntos ...26
2.3.1 Redes con arquitectura convolucional: PointNet ...28
2.3.2 Redes con arquitectura Transformer: Point Transformer...29

2.3.3 Redes con arquitectura de grafos: SPGraph...31

3 Especificación del trabajo .. 32

3.1 Requisitos iniciales ...32

3.2 Hipótesis y restricciones ...33
3.2.1 Hipótesis ..33
3.2.2 Restricciones ...33

3.3 Riesgo del trabajo ..34
3.4 Estudio de alternativas y viabilidad ...35

3.4.1 Generación procedural ...35

3.4.1.1 Procedural City Generator ..35
3.4.1.2 ArcGIS CityEngine ...36
3.4.1.3 RailClone ...37

3.4.2 Fragmentación de ciudades ...37
3.4.2.1 Unity 3D ...38
3.4.2.2 Unreal Engine ..38

3.4.3 Redes neuronales ..39
3.4.3.1 Proyecto Super Point Transformer ..39
3.4.3.2 Proyecto PointNet2 Semantic ...40

3.4.3.3 Proyecto RepSurf ...40
3.4.4 Entorno de trabajo ...41

3.4.4.1 Máquina virtual con VirtualBox..41

3.4.4.2 Subsistema de Windows para Linux ...42
3.5 Descripción de la solución propuesta ...42
3.6 Alcance ..43

3.7 Tecnologías utilizadas ..45

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 9

3.7.1 Software para gráficos ...45

3.7.2 Programación y lenguajes ..45
3.7.3 Entornos virtuales ..45
3.7.4 Documentación ..46

3.8 Metodología ...46
3.8.1 Metodología general del ciclo de vida del proyecto ...47
3.8.2 Metodología dentro del desarrollo ..48

3.9 Estimación del tamaño y esfuerzo ..49
3.9.1 Paquete de trabajo 1: Gestión y coordinación...50
3.9.2 Paquete de trabajo 2: Investigación ..52

3.9.3 Paquete de trabajo 3: Desarrollo ..54
3.9.4 Paquete de trabajo 4: Experimentación ..56

3.10 Planificación temporal ...58

3.11 Presupuesto ..60
3.12 Visión general del proyecto ...62

4 Generador de fragmentos de ciudades .. 64

4.1 Diseño inicial ..64
4.1.1 Especificaciones del sistema ..64

4.1.1.1 Extracción de requisitos funcionales ...64

4.1.1.2 Extracción de requisitos no funcionales ..66
4.1.2 Análisis y diseño del sistema ..67

4.1.2.1 Diagrama de casos de uso ...67

4.1.2.2 Casos de uso ...68
4.1.2.3 Diseño arquitectónico ...72

4.2 Desarrollo del fragmentador de ciudades ...73

4.2.1 Primera iteración: sistema de fragmentación ..73
4.2.1.1 Instanciación de fragmentadores ..74
4.2.1.2 Objeto fragmentador...76

4.2.1.3 Pruebas..77
4.2.2 Segunda iteración: generación de archivos y etiquetado ..78

4.2.2.1 Gestión y conversión del etiquetado ...78

4.2.2.2 Generación de archivos XML para LiDAR virtual...80
4.2.2.3 Pruebas..81

4.2.3 Tercera iteración: previsualizador de nubes LiDAR e interfaz82

4.2.3.1 Obtención de nubes de previsualización ...82
4.2.3.2 Interfaz de la aplicación ..83
4.2.3.3 Pruebas..86

5 Experimentación con redes neuronales... 87

5.1 Recopilación de datos ..87
5.1.1 Conjunto de datos reales ...87
5.1.2 Conjunto de datos sintéticos ..87

5.1.2.1 Generación de ciudades mediante reglas ...88
5.1.2.2 Fragmentado y etiquetado de ciudades ..91
5.1.2.3 Obtención de nubes de puntos con LiDAR virtual ...92

5.2 Preprocesamiento y transformación de los datos ..93
5.2.1 Integración y adaptación a la arquitectura ..94
5.2.2 Limpieza de los datos ..96

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 10

5.2.3 Reducción de la dimensionalidad ...97

5.2.4 División de los datasets..98
5.3 Minería de datos .. 100

5.3.1 Adaptación del proyecto RepSurf ... 100

5.3.1.1 Problemas de memoria: swapping .. 102
5.3.2 Redes ofrecidas por el proyecto RepSurf ... 103

5.3.2.1 Red PointNet++ .. 103

5.3.2.2 Red Point Transformer ... 104
5.3.2.3 Módulo Umbrella RepSurf .. 104

5.3.3 Métricas utilizadas para el cálculo del error .. 106

5.3.3.1 Valor de pérdida (Loss) .. 107
5.3.3.2 Métrica Acc (Accuracy) ... 107
5.3.3.3 Métrica IoU (Intersection over Union) .. 108

5.3.3.4 Métrica OA (Overall Accuracy).. 108
5.3.4 Parámetros y aumentación... 109
5.3.5 Optimización de hiperparámetros ... 111

5.4 Evaluación e interpretación .. 114
5.4.1 Experimento 1: Entrenamiento y testeo con datos reales.. 114
5.4.2 Experimento 2: Entrenamiento y testeo con datos sintéticos..................................... 119

5.4.3 Experimento 3: Entrenamiento con datos sintéticos y testeo con datos reales 125
5.4.4 Experimento extra: Entrenamiento con datos mixtos y testeo con datos reales 130

6 Resultados y discusión ...135

7 Conclusiones y trabajos futuros ...140

8 Apéndices ..143

8.1 Guía original del Trabajo Fin de Título .. 143
8.1.1 Conocimientos previos ... 143
8.1.2 Objetivos del TFM .. 143

8.1.3 Metodología a desarrollar ... 144
8.1.4 Documentación y formatos de entrega ... 144

8.2 Manuales de usuario .. 145

8.2.1 Aplicación para generar fragmentos de ciudades ... 145
8.2.1.1 ¿Cómo configurar el fragmentador? ... 146
8.2.1.2 ¿Cómo cambiar de ciudad para procesarla en la aplicación? 147

8.2.1.3 ¿Cómo añadir nuevas texturas a las tablas?... 148
8.2.1.4 ¿Cómo incluir nuevos datasets? ... 148
8.2.1.5 Recomendaciones adicionales para la visualización ... 149

8.2.2 Proyecto RepSurf ... 149
8.2.2.1 ¿Cómo se cambia el conjunto de datos? .. 150
8.2.2.2 ¿Cómo solucionar los problemas de VRAM? .. 151

8.2.2.3 ¿Cómo instalar desde cero el proyecto? ... 151
8.2.3 Script para preparación de los datos .. 151

9 Definiciones y abreviaturas ...153

10 Bibliografía ..156

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 11

Índice de ilustraciones

Ilustración 2.1: Ciudad creada con L-System [1] ... 20

Ilustración 2.2: Geometría de edificios según parámetros de ajuste y posición [2] 21

Ilustración 2.3: Diagrama de Voronoi [3] ... 21

Ilustración 2.4: Generación de fortaleza infinita con funciones de colisión de onda [4] 22

Ilustración 2.5: Nube de Semantic3D [7] ... 23

Ilustración 2.6: Nubes de Semantic KITTI [9] .. 24

Ilustración 2.7: Nube de Paris-Lille-3D [10] ... 25

Ilustración 2.8: Estructura de las nubes de puntos en [11] ... 25

Ilustración 2.9: Nube de Toronto-3D [12] .. 26

Ilustración 2.10: Estructura Jerárquica de PointNet++ [22] .. 29

Ilustración 2.11: Arquitectura Transformer [23] ... 30

Ilustración 2.12: Grafo de superpuntos [26] .. 31

Ilustración 3.1: Ciudad creada con Procedural City Generator ... 36

Ilustración 3.2: Sistema de nodos de RailClone .. 37

Ilustración 3.3: Hitos siguiendo metodología Project Milestones .. 48

Ilustración 3.4: EDT del proyecto ... 50

Ilustración 3.5: Calendario del proyecto .. 59

Ilustración 3.6: Flujo de trabajo del proyecto ... 62

Ilustración 4.1: Diagrama de casos de uso ... 68

Ilustración 4.2: UML de la aplicación .. 72

Ilustración 4.3: Reparto democrático de puntos en función del área 74

Ilustración 4.4: Instanciación pseudoaleatoria de fragmentadores 75

Ilustración 4.5: Fragmento de ciudad.. 77

Ilustración 4.6: Tabla de claves .. 79

Ilustración 4.7: Tabla de materiales .. 79

Ilustración 4.8: Tabla de conversión de etiquetas .. 79

Ilustración 4.9: Proceso de etiquetado de mallas .. 80

Ilustración 4.10: Funcionamiento del previsualizador LiDAR.. 83

Ilustración 4.11: Interfaz de la aplicación .. 84

Ilustración 5.1: Crear proyecto CityEngine .. 88

Ilustración 5.2: Configurar proyecto .. 88

Ilustración 5.3: Puerto carretero ... 89

Ilustración 5.4: Reglas iniciales de generación.. 89

Ilustración 5.5: Interfaz de CityEngine .. 89

Ilustración 5.6: Ciudad sin construir .. 90

Ilustración 5.7: Ciudad construida .. 90

Ilustración 5.8: Ciudades generadas con CityEngine... 90

Ilustración 5.9: Fragmento de ciudad.. 92

Ilustración 5.10: Previsualización de nube LiDAR ... 92

Ilustración 5.11: Ubicación actual dentro del flujo del proyecto .. 92

Ilustración 5.12: Funcionamiento del LiDAR virtual [48] (Enhancing LiDAR point cloud

generation with BRDF-based appearance modelling).. 93

Ilustración 5.13: Distribución de los datos ... 99

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 12

Ilustración 5.14: Concepto de RepSurf ..105

Ilustración 5.15: Output simplificado ..106

Ilustración 5.16: Evolución de métricas por épocas ..111

Ilustración 5.17: Evolución del valor de pérdida por épocas..112

Ilustración 5.18: Nube de puntos esperada ..116

Ilustración 5.19: Nube de puntos obtenida ..116

Ilustración 5.20: Métrica IoU entre redes para experimento 1 ...117

Ilustración 5.21: Métrica Acc entre redes para experimento 1 ...117

Ilustración 5.22: Nube de puntos obtenida ...120

Ilustración 5.23: Nube de puntos obtenida ...120

Ilustración 5.24: Comparativa entre exp 1 y exp 2 para IoU con PointNet++121

Ilustración 5.25: Comparativa entre exp 1 y exp 2 para Acc con PointNet++121

Ilustración 5.26: Comparativa entre exp 1 y exp 2 para IoU con Point Transformer122

Ilustración 5.27: Comparativa entre exp 1 y exp 2 para Acc con Point Transformer122

Ilustración 5.28: Comparativa exp 1 y exp 2 para IoU con RepSurf...................................123

Ilustración 5.29: Comparativa exp 1 y exp 2 para Acc con RepSurf123

Ilustración 5.30: Nube de puntos esperada ..126

Ilustración 5.31: Nube de puntos obtenida ...126

Ilustración 5.32: Comparativa entre exp 1 y exp 3 para IoU con PointNet++128

Ilustración 5.33: Comparativa entre exp 1 y exp 3 para Acc con PointNet++128

Ilustración 5.34: Comparativa entre exp 1 y exp 3 para IoU con Point Transformer128

Ilustración 5.35: Comparativa entre exp 1 y exp 3 para Acc con Point Transformer128

Ilustración 5.36: Comparativa entre exp 1 y exp 3 para IoU con RepSurf129

Ilustración 5.37: Comparativa entre exp 1 y exp 3 para Acc con RepSurf..........................129

Ilustración 5.38: Nube de puntos esperada ..131

Ilustración 5.39: Nube de puntos obtenida ...131

Ilustración 5.40: Comparativa entre exp 1, exp2 y exp 3 para IoU con PointNet++132

Ilustración 5.41: Comparativa entre exp 1, exp2 y exp 3 para Acc con PointNet++132

Ilustración 5.42: Comparativa entre exp 1, exp2 y exp 3 para IoU con Point Transformer ..133

Ilustración 5.43: Comparativa entre exp 1, exp2 y exp 3 para Acc con Point Transformer ..133

Ilustración 5.44: Comparativa entre exp 1, exp2 y exp 3 para IoU con RepSurf134

Ilustración 5.45: Comparativa entre exp 1, exp2 y exp 3 para Acc con RepSurf134

Ilustración 6.1: Fragmento de ciudad sintético etiquetado ..135

Ilustración 6.2: Nube de puntos sintética ...135

Ilustración 6.3: Comparación de resultados generales en PointNet++136

Ilustración 6.4: Comparación de resultados generales en Point Transformer137

Ilustración 6.5: Comparación de resultados generales en RepSurf138

Ilustración 8.1: Aplicación fragmentadora abierto en Unity ...145

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 13

Índice de tablas

Tabla 3.1: Tarea 1.1 .. 51

Tabla 3.2: Tarea 1.2 .. 51

Tabla 3.3: Tarea 1.3 .. 52

Tabla 3.4: Tarea 1.4 .. 52

Tabla 3.5: Tarea 2.1 .. 53

Tabla 3.6: Tarea 2.2 .. 53

Tabla 3.7: Tarea 2.3 .. 54

Tabla 3.8: Tarea 3.1 .. 55

Tabla 3.9: Tarea 3.2 .. 55

Tabla 3.10: Tarea 3.3 .. 55

Tabla 3.11: Tarea 4.1 .. 56

Tabla 3.12: Tarea 4.2 .. 57

Tabla 3.13: Tarea 4.3 .. 57

Tabla 3.14: Tarea 4.4 .. 58

Tabla 3.15: Costes de material .. 60

Tabla 3.16: Costes de personal ... 61

Tabla 3.17: Costes totales ... 61

Tabla 4.1: Plantilla para los requisitos .. 64

Tabla 4.2: RF-01 ... 65

Tabla 4.3: RF-02 ... 65

Tabla 4.4: RF-03 ... 65

Tabla 4.5: RF-04 ... 65

Tabla 4.6: RF-05 ... 66

Tabla 4.7: RNF-01 ... 66

Tabla 4.8: RNF-02 ... 66

Tabla 4.9: RNF-03 ... 66

Tabla 4.10: RNF-04 ... 67

Tabla 4.11: Actor usuario ... 67

Tabla 4.12: Actor sistema .. 67

Tabla 4.13: Plantilla de casos de uso ... 68

Tabla 4.14: CU-01 ... 69

Tabla 4.15: CU-02 ... 69

Tabla 4.16: CU-03 ... 70

Tabla 4.17: CU-04 ... 70

Tabla 4.18: CU-05 ... 71

Tabla 4.19: T-01 .. 77

Tabla 4.20: T-02 .. 77

Tabla 4.21: T-03 .. 81

Tabla 4.22: T-04 .. 81

Tabla 4.23: T-05 .. 86

Tabla 4.24: T-06 .. 86

Tabla 4.25: T-07 .. 86

Tabla 5.1: Configuración de todos los entrenamientos ...113

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 14

Tabla 5.2: Resultados del experimento 1 ...114

Tabla 5.3: Resultados generales del experimento 1 ...118

Tabla 5.4: Resultados del experimento 2 ...119

Tabla 5.5: Resultados generales del experimento 2 ...120

Tabla 5.6: Resultados del experimento 2 ...125

Tabla 5.7: Resultados generales del experimento 3 ...126

Tabla 5.8: Resultados del experimento 4 ...131

Tabla 5.9: Resultados generales del experimento 4 ...132

Tabla 6.1: Comparativa de tiempos totales entre redes (en minutos)139

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 15

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 16

1 INTRODUCCIÓN

El desembolso millonario anual por parte de las grandes empresas muestra el

potencial de esta área de la informática, el aprendizaje automático. Entre sus

aplicaciones se encuentran los vehículos autónomos, la prevención de tumores, la

traducción en tiempo real, el contenido multimedia autogenerado, la asistencia virtual,

etc. Impensable hasta hace poco, lo cierto es que hoy vivimos en medio de una

revolución liderada por la inteligencia artificial (IA).

Los avances más punteros dentro de la IA están asociados con las redes

neuronales y deep learning (DL), pudiéndose aplicar para una gran cantidad de

contextos donde resolver problemas de diferente naturaleza. Sin embargo, estos

algoritmos bioinspirados requieren de un proceso de aprendizaje basado en grandes

cantidades de datos que no siempre son fáciles de conseguir. Esto nos lleva a uno de

los principales problemas de estos algoritmos: los conjuntos de datos utilizados para

la llamada fase de entrenamiento.

Este proyecto se centrará en la creación de un conjunto de datos sintético y en

la experimentación con redes neuronales aplicadas a nubes de puntos, contribuyendo

en paradigmas de gran relevancia actualmente como el de la conducción automática,

la monitorización de proyectos de construcción o el análisis de la infraestructura y

espacios verdes.

1.1 Motivación

La motivación principal no es sólo la de mostrar los conocimientos y la madurez

adquirida tras finalizar el máster en ingeniería informática, sino que además con este

trabajo se persigue contribuir significativamente en la reducción de los costes

económicos y temporales que conlleva crear estos datasets de nubes de puntos

etiquetadas con técnicas tradicionales.

En efecto, con ello se busca contribuir a la viabilidad del uso de las redes

neuronales aplicadas al problema de segmentación de nubes de puntos dentro de

entornos urbanos mediante la creación automatizada de un conjunto de datos

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 17

sintéticos y etiquetados procedentes de un sensor LiDAR (Laser Detection and

Ranging) virtual.

1.2 Objetivos del proyecto

El objetivo principal es realizar un estudio experimental que permita impulsar el

uso de las redes neuronales aplicadas a nubes de puntos en el ámbito de los entornos

urbanos. Para ello destacaremos una serie de objetivos específicos que se tendrán

en cuenta para la base del proyecto:

1. Objetivo 1 (O1). Gestión y coordinación: se garantizará el establecimiento

de un sistema de seguimiento y supervisión que asegure el cumplimiento

de los plazos, presupuesto y recursos asignados, facilitando así la toma de

decisiones, la cooperación y la evaluación continua del progreso.

2. Objetivo 2 (O2). Obtención de modelos urbanos procedurales etiquetados:

se generarán fragmentos de ciudades a través de técnicas procedurales

con etiquetado de los objetos que los componen, siendo posible la

traducción entre diferentes conjuntos de etiquetas.

3. Objetivo 3 (O3). Elaboración de un dataset sintético: creación de un

dataset constituido por multitud de nubes de puntos sintéticas obtenidas de

un sensor LiDAR virtual en entornos urbanos, con la variabilidad suficiente

como para ser de utilidad en la generación de modelos.

4. Objetivo 4 (O4). preparación, adaptación y análisis del funcionamiento de

los proyectos actuales de redes neuronales basados en nubes de puntos

LiDAR.

5. Objetivo 5 (O5). experimentación mediante el entrenamiento de múltiples

redes neuronales y evaluación comparativa entre los resultados de los

modelos obtenidos de diferentes conjuntos de datos reales y sintéticos.

A la vista de los objetivos presentados, es evidente que el proyecto que se

busca realizar, si bien se trata de un trabajo teórico experimental, requiere de un

desarrollo de software específico para la construcción procedural de entornos urbanos

sintéticos y etiquetados que se puedan utilizar por el simulador LiDAR.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 18

1.3 Estructuración de la memoria

A lo largo de esta memoria se presentará el resultado del proceso de

investigación y experimentación llevado a cabo a lo largo de estos últimos meses. En

primer lugar, la sección 2 (Antecedentes y estado del arte) situará al proyecto

presentando los trabajos, investigaciones y avances que lo hicieron posible, siendo un

apartado separado en 3 bloques temáticos: generación procedural (Generación

procedural de ciudades sintéticas), conjuntos de datos (Conjuntos de datos LiDAR

para entornos urbanos) y redes neuronales (Redes neuronales artificiales para nubes

de puntos). Una vez conocidos los antecedentes, se detallarán las especificaciones

del proyecto en el punto 3 (Especificación del trabajo), analizando puntos clave como

son la metodología utilizada, decisiones tomadas o el presupuesto. La parte más

práctica del proyecto se ubica en los 2 epígrafes posteriores. El primero de ellos, el

apartado 4 (Generador de fragmentos de ciudades), tratará sobre el diseño y

desarrollo en Unity de la aplicación de fragmentado de ciudades procedurales. Una

vez en posesión de los fragmentos etiquetados se alcanza la sección 5

(Experimentación con redes neuronales), donde se harán un conjunto de pruebas

experimentales siguiendo las fases del Knowledge Discovery in Databases (KDD) con

varias redes para finalmente terminar el estudio con los apartados 6 (Resultados y

discusión) y 7 (Conclusiones y trabajos futuros), en los cuales se presentará un

resumen a nivel global del proyecto, unas conclusiones y un conjunto de trabajos

futuros.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 19

2 ANTECEDENTES Y ESTADO DEL ARTE

Esta investigación parte del uso de un sensor LiDAR virtual que debe ejecutarse

de igual manera sobre un escenario virtual. El diseño y creación manual de entornos

urbanos es una tarea que requiere de bastante tiempo, por lo que es mucho mejor

definir un conjunto de reglas para generarlos proceduralmente.

En particular este proyecto se sumergirá en múltiples temas de investigación

en los que predominarán la generación procedural de ciudades, los datasets actuales

de entornos urbanos y las redes neuronales. En lo consecutivo, se hará un breve

análisis de cada uno de estos ámbitos para comprender mejor el contexto del trabajo.

2.1 Generación procedural de ciudades sintéticas

La generación de ciudades sintéticas mediante técnicas procedurales es un

área de estudio que lleva muchos años activa y sigue en auge dadas las aplicaciones

y posibilidades que ofrece. Es por esto se han ido proponiendo múltiples estrategias

para este fin dentro de la literatura.

2.1.1 Sistemas de reglas y L-System

Recordando algunos de los artículos más influyentes, Parish y Müller

propusieron un artículo disruptivo en el año 2001, “Procedural Modeling of Cities” [1],

en el cual presentaron los L-System como una solución para la generación procedural

de ciudades. La estructura de un L-System tiene 3 partes fundamentales que deben

conocerse:

• Axioma: cadena o estado inicial del sistema desde el cual se comienzan a

aplicar las reglas de producción. Esta cadena inicial puede ser una secuencia

simple, como "P" (plaza) o algo más complejo, dependiendo del patrón que

se desea generar.

• Alfabeto: conjunto de símbolos que el sistema utiliza en las reglas de

producción. Estos símbolos representan diferentes acciones; por ejemplo, en

un L-System algunos símbolos comunes podrían ser F (avance de N

unidades en línea recta), L (giro en ángulo recto), O (rotonda), etc.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 20

• Reglas de producción: instrucciones que definen cómo cada símbolo del

alfabeto debe transformarse en la siguiente iteración. Cada símbolo tiene

reglas específicas asociadas que especifican cómo se expande con otros

símbolos. Un par de reglas para F podrían ser {F → F, F → FL, F → FOF}.

Dicho esto, el artículo proponía un sistema de reglas que, dada una entrada

con información del terreno, fuese capaz de dividirlo y crear la geometría

apropiada tanto para el puerto carretero como para los edificios. Esto permitía

tener en cuenta parámetros como la densidad de población, el tipo de ciudad o

incluso el estilo de barrio. En otras palabras, las reglas de producción aplicadas

dentro de estos L-System permitían aplicar métodos globales y locales para

alcanzar una serie de objetivos, introduciendo coherencia general a la vez que

un buen nivel de detalles.

Ilustración 2.1: Ciudad creada con L-System [1]

Por otro lado, se encuentra “Real-time Procedural Generation of Pseudo Infinite

Cities” [2], un artículo del año 2003 que proponía un enfoque para maximizar la

variabilidad de la geometría de los edificios basándonos en los parámetros de ajuste

y la posición. Estas variadas construcciones para edificios se conseguían con la

extrusión de un conjunto de planos de planta creados aleatoriamente, dando lugar a

edificios con geometría plural entre diferentes plantas. Aunque no se puede decir que

fue rompedor su planteamiento en cuanto al puerto carretero, pues se trataba

simplemente de una cuadrícula, sí que es cierto que supuso un avance en la

generación de geometría para edificios.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 21

Ilustración 2.2: Geometría de edificios según parámetros de ajuste y posición [2]

2.1.2 Diagramas de Voronoi

Otro enfoque que difiere en la generación de puertos carreteros vista es

propuesta en 2006. Con el artículo “Duplicating road patterns in south african informal

settlements using procedural techniques” [3], un trabajo que se centra en el estudio

de los patrones de asentamientos más informales dentro de complejos entornos

urbanos, como es el caso de algunas ciudades de Sudáfrica. Con este artículo, se

propone el uso de diagramas de Voronoi para replicar estas estructuras urbanas,

concepto que se combina con los L-System para obtener un patrón más cercano al de

los asentamientos informales estructurados.

Ilustración 2.3: Diagrama de Voronoi [3]

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 22

2.1.3 Sistemas multiagente

Una tendencia también muy interesante es la que se marcaba con “Procedural

City Modeling” [4] en el año 2003 por parte de Lechner et al., una visión que, en lugar

de generar ciudades sobre la base del puerto carretero, lo hacía en función del suelo

y la distribución de edificios. Fue un enfoque que buscó aumentar el realismo de las

ciudades generadas proceduralmente y que traía como característica clave el uso de

agentes inteligentes para la generación de ciudades. En este artículo propone un

sistema de agentes extensible capaces de interactuar entre sí, cada uno de ellos con

la capacidad de aplicar un simple conjunto de reglas y que en potencia se vuelve

complejo durante la interacción con el resto de agentes.

2.1.4 Funciones de colisión de ondas

 Otra técnica más reciente es la propuesta de 2016, “Wave Function Collapse

Algorithm” [5], publicada por Maxim Gumin en GitHub. Aunque no está orientado

directamente a la creación de ciudades, fue un algoritmo popular para la generación

procedural que podría aplicarse también para este problema. Pese a su nombre,

realmente no está completamente relacionado con la mecánica cuántica, aunque sí

que se inspira en la idea del colapso de onda para aplicar una generación por

procedimientos.

Ilustración 2.4: Generación de fortaleza infinita con funciones de colisión de onda [4]

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 23

2.2 Conjuntos de datos LiDAR para entornos urbanos

Los datos etiquetados son fundamentales para el éxito del aprendizaje

supervisado, pues permiten a los algoritmos aprender a identificar patrones y realizar

predicciones basadas en un conjunto de características específicas como pueden ser

la geometría de una nube de puntos. Los datos etiquetados proporcionan a los

modelos de IA la información necesaria para entrenar de manera estructurada,

ayudando a establecer relaciones claras entre información espacial y etiquetas.

En el contexto de este proyecto nos centraremos en datasets con nubes de

puntos obtenidas mediante tecnología LiDAR captadas en exteriores y en particular,

en zonas urbanas. Aunque exista una gran cantidad de nubes de puntos en proyectos

como lo son el PNOA (Plan Nacional de Ortofotografía Aérea [6]), la realidad es que

normalmente no están etiquetados, siendo de poca utilidad para el entrenamiento de

redes neuronales. Pese a ello, existen algunos datasets etiquetados y orientados al

problema de segmentación que merecen ser descritos brevemente.

2.2.1 Dataset Semantic3D

Comenzamos el análisis destacando el dataset de Semantic3D [7], presentado

en 2017 por investigadores de la Universidad de Bonn como un benchmark para la

clasificación semántica de nubes de puntos en exterior. Contiene más de 4 mil

millones de puntos etiquetados en 8 clases diferentes. Sus nubes fueron registradas

con un sensor LiDAR estático y posteriormente etiquetadas por profesionales,

consiguiendo nubes etiquetadas para entornos naturales y escenas urbanas con gran

variedad de estructuras como iglesias, calles, vías de tren, plazas, pueblos o castillos.

Ilustración 2.5: Nube de Semantic3D [7]

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 24

2.2.2 Dataset Semantic KITTI

Con un nombre muy similar tenemos Semantic KITTI [8], creado en 2019 como

una extensión del célebre conjunto KITTI [9]. A diferencia del conjunto anterior,

Semantic KITTI fue medido con un sensor LiDAR montado en un vehículo en

circulación como un sistema láser móvil (MLS), de manera que era capaz de tomar

las mediciones a una velocidad de 10Hz. Esto lo hace muy interesante para problemas

como el de la conducción autónoma. Cabe mencionar que es un dataset muy pesado

dada la densidad de sus nubes, ocupando cerca de 80GB con una media de alrededor

de 4,549 millones de puntos por nube. Estos datos están organizados en 28 clases,

distinguiéndose objetos inmóviles (22 clases) y móviles (6 clases restantes). En

general, este conjunto cubre usuarios de tráfico, áreas de estacionamiento, aceras,

etc.

Ilustración 2.6: Nubes de Semantic KITTI [9]

2.2.3 Dataset Paris-Lille-3D

Paris-Lille-3D [10] es un conjunto de nubes de puntos centrado en escenas

urbanas de ciudades francesas. Fue creado en 2017 para contribuir con el avance de

problemas para la segmentación y clasificación automatizada de nubes de puntos. Al

igual que sucedía con Semantic KITTI, estos datos han sido generados por un MLS

circulando por las calles de París y Lille. Contiene 143 millones de puntos etiquetados

a mano y cuenta con 50 clases diferentes. No obstante, el conjunto se publicó con una

transformación para conservar solo las 10 clases generales más representativas.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 25

Ilustración 2.7: Nube de Paris-Lille-3D [10]

2.2.4 Dataset DublinCity

Publicado por investigadores de la University College Dublin en 2019,

DublinCity [11] es otro conjunto de datos de nubes de puntos a gran escala capturado

en la ciudad de Dublín (Irlanda) que está dirigido a la reconstrucción 3D y la creación

de modelos digitales de ciudades. Supone una nube etiquetada de más de 260

millones de puntos obtenidos de las mediciones de un sensor LiDAR aéreo de alta

densidad a lo largo del año 2015. Tiene 13 clases que se organizan en niveles

jerárquicos de detalle, desde elementos generales a otros específicos.

Ilustración 2.8: Estructura de las nubes de puntos en [11]

Tal y como se observa en la Ilustración 2.8, se pueden encontrar etiquetas de

alto nivel como Building o Vegetation, mientras que también se pueden encontrar a su

vez etiquetas de bajo nivel como Window. Esto convierte al dataset no solo en una

herramienta para reconstrucción y modelado, sino también para su uso en

entrenamientos de redes neuronales.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 26

2.2.5 Dataset Toronto-3D

Terminamos finalmente presentando el dataset más influyente para este

proyecto, Toronto-3D [12], un conjunto de nubes de puntos urbanas adquirido por un

sistema LiDAR móvil en la ciudad de Toronto, Canadá. El conjunto fue creado por la

Universidad de Toronto en el año 2020 y es uno de los más recientes. Este conjunto

está completamente etiquetado y pensado para su uso en problemas de

segmentación, cubriendo aproximadamente 1 km de carretera con unos 78.3 millones

de puntos (3GB de datos repartidos en 4 archivos). Sin duda es un buen dataset para

realizar entrenamientos supervisados, pues incorpora nubes de puntos con mucha

información. Más concretamente, cada uno de los puntos de sus nubes contiene 10

atributos útiles para el entrenamiento como son la posición, el color, la intensidad o el

GPS, así como también se asocian a las 8 clases de etiquetas.

Ilustración 2.9: Nube de Toronto-3D [12]

2.3 Redes neuronales artificiales para nubes de puntos

Las redes neuronales son algoritmos de inteligencia artificial inspirados en el

funcionamiento del cerebro humano, diseñados para procesar y aprender de grandes

volúmenes de datos. Cada red está compuesta por unidades denominadas neuronas

artificiales organizadas en capas, donde cada neurona recibe señales, las procesa y

genera una salida que pasa a la siguiente capa. Este proceso permite a las redes

aprender patrones en los datos mediante un ajuste continuo de los pesos, que

representan la importancia de cada conexión entre neuronas.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 27

Aunque surgieron de manera teórica en la década de los 70, podemos decir

que en la actualidad estas proveen soluciones a una gran cantidad de campos, tales

como el procesamiento del lenguaje natural, con redes como ChatGPT [13], visión

artificial con Swin Transformer [14], creación de imágenes con DALL-E [15],

generación de vídeos con SORA [16], detección de voz con Whisper [17], generación

de audio con Suno [18], interpolación de fotogramas en películas de animación con

ToonCrafter [19], etc. Cada una de ellas con una arquitectura única, aunque podemos

considerar que las arquitecturas más comunes son las siguientes:

• Redes neuronales artificiales, Artificial Neural Networks (ANN): siendo la

base de redes más complejas, estas están compuestas por capas de

neuronas con conexiones densas para usos en tareas de clasificación y

regresión.

• Redes neuronales convolucionales, Convolutional Neural Network (CNN):

utilizadas principalmente para procesamiento de imágenes y visión artificial,

estas redes aplican operaciones de convolución para identificar patrones en

datos espaciales.

• Redes neuronales generativas adversarias, Generative Adversarial Networks

(GAN): compuestas por dos redes que compiten entre sí. Una de ellas es la

red generadora que tiene como misión crear datos, y la otra es la red

discriminadora que intenta distinguir entre datos reales y generados. La red

generadora debe ser capaz de crear datos de calidad que permitan “engañar”

a la discriminadora.

• Redes neuronales recurrentes, Recurrent Neural Networks (RNN): diseñadas

para procesar secuencias de datos, cuentan con conexiones recurrentes que

pueden almacenar la información previa, lo cual permite comprender

dependencias a lo largo del tiempo. Sin embargo, estas redes poseían el

problema de localización de patrones a largo plazo, surgiendo las Long Short-

Term Memory (LSTM), o también llamadas memorias a largo y corto plazo,

como una extensión de las RNN.

• Redes neuronales de grafos, Graph Neural Networks (GNN): son redes

neuronales que están planteadas para trabajar con datos que permiten ser

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 28

representados como un grafo, de tal manera que los nodos representan

entidades individuales y las aristas representan las relaciones entre estas.

• AutoEncoders: están diseñados para reducir la dimensionalidad de los datos

y reconstruir la entrada original, extrayendo características relevantes. Son

útiles en compresión de datos, eliminación de ruido y detección de anomalías.

• Transformers: utilizan mecanismos de atención para procesar secuencias sin

necesidad de recurrencia, lo que las hace mucho más eficientes en tareas de

procesamiento de lenguaje natural. Desde su publicación, estas redes han

hecho que las redes RNN hayan quedado en un segundo plano a favor de la

arquitectura Transformer.

Conociendo ligeramente las arquitecturas que predominan en el campo, se van

a presentar una serie de redes neuronales aplicadas a nubes de puntos que

incorporan algunas de estas estructuras para la resolución de problemas típicos como

la clasificación y la segmentación.

2.3.1 Redes con arquitectura convolucional: PointNet

Introducida por Qi et al. en 2017 con su artículo “PointNet: DL on Point Sets for

3D Classification and Segmentation” [20], marcó un avance significativo frente a las

redes convolucionales tradicionales. Anteriormente, las redes requerían de

estructuras ordenadas, sin embargo, esta red era capaz de procesar directamente

nubes de puntos con una naturaleza desordenada.

Este tipo de redes se fundamentan en el uso de convoluciones, siendo esta una

operación matemática que permite extraer características importantes de la vecindad

de los datos de entrada, algo que se consigue con un kernel. Mediante el

desplazamiento del núcleo de convolución por el espacio se consigue generar un

mapa de características que permite la detección de patrones, sin importar su posición

exacta. En el caso concreto de PointNet se emplea una combinación de capas de

multi-perceptrones, Multi-Layer Perceptrón (MLP), para procesar cada punto de la

nube de manera independiente y consigue, mediante la operación max pooling [21],

que la red sea invariante al orden de los puntos.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 29

Tras su éxito, la red incorporó una actualización que redefinía parte de su

funcionamiento, dando lugar a la creación de PointNet++ con el artículo “PointNet++:

Deep Hierarchical Feature Learning on Point Sets in a Metric Space” [22]. Esta nueva

red funcionaba como la clásica, con el añadido de un funcionamiento jerarquizado

para capturar características locales a múltiples escalas. Ello permitiría a la red

manejar variaciones en la densidad de las nubes de puntos, mejorando el rendimiento

en escenas complejas.

Ilustración 2.10: Estructura Jerárquica de PointNet++ [22]

Al igual que PointNet y PointNet++, se encuentran otras redes también muy

conocidas con funcionamiento similar como GeomAdapt o PointConv, y otrasvoxelizan

dichas nubes como FCNVoxNet que, aun teniendo un funcionamiento parecido,

trabajan con vóxeles. Para ello se sigue la misma filosofía, pero en lugar de trabajar

con nubes de puntos, voxelizan dichas nubes para posteriormente procesarlas.

2.3.2 Redes con arquitectura Transformer: Point Transformer

A partir del artículo escrito por investigadores de Google, “Attention is all you

need” [23], no sólo hubo cambios dentro del campo del Procesamiento del Lenguaje

Natural (PLN), sino que esto se extrapoló a otras tareas: análisis de imágenes,

clasificación de imágenes, detección de objetos, etc. Inspirado por este éxito, Point

Transformer [24] fue creado en 2020 para explotar esta nueva tecnología aplicándose

a problemas de clasificación y segmentación de nubes de puntos 3D.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 30

Recordemos que la arquitectura Transformer, mostrada gráficamente en la

Ilustración 2.11, consta de varias partes:

• Codificador: esta parte se encarga de procesar la información de entrada (la

nube de puntos) identificando las partes más relevantes y generando un

embedding [25] que captura para cada punto tanto sus coordenadas 3D como

características adicionales (como el color o la intensidad), consiguiendo así

reflejar su importancia en relación con otros puntos de la nube.

• Decodificador: esta otra parte toma la salida del codificador y transforma los

embeddings generados por el codificador en representaciones de salida

útiles, como clasificaciones o segmentaciones de los puntos en la nube.

Ilustración 2.11: Arquitectura Transformer [23]

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 31

2.3.3 Redes con arquitectura de grafos: SPGraph

Esta arquitectura trabaja sobre grafos en lugar de con datos en otras formas

más comunes como vectores, matrices o tensores. Aquí, el grafo se compone de

nodos, siendo estos los puntos de la nube, y aristas, que los relacionan. Gracias a la

propagación de información mediante este tipo de estructura, la red actualiza la

representación de la nube en función de los vecinos de cada punto. Posteriormente,

la red converge de manera similar a las redes convolucionales dado que se aplican

capas de convolución dentro del grafo, permitiendo que las características de los

nodos se fusionen de manera similar a como las CNN combinan características.

Un ejemplo de este tipo de arquitecturas se da en SPGraph, una red que trata

de sobrellevar el tamaño de los escaneos LiDAR masivos y que da un paso más allá

respecto del formato original de estas arquitecturas. El artículo “Large-scale Point

Cloud Semantic Segmentation with Superpoint Graphs” [26] propone una

representación de Grafo de Super Puntos (SPG). Para conseguir el SPG primero ha

de dividirse la nube de puntos en formas geométricas simples y significativas, lo cual

se representa mediante los llamados “super puntos” tras un proceso automatizado no

supervisado. Estos super puntos son los nodos de un grafo reducido y permiten el uso

de métodos de embedding para nubes de puntos como PointNet.

Ilustración 2.12: Grafo de superpuntos [26]

En la Ilustración 2.12 está el principal avance del artículo de SPGraph, donde

se muestra cómo se pasa de un grafo que interconecta una gran cantidad de puntos

a un SPG que tiene únicamente 6 nodos. Esto hace que el rendimiento mejore y los

algoritmos de aprendizaje profundo basados en convoluciones de grafos puedan

trabajar sobre nubes aprovechando las características de las aristas que

interrelacionan los “super puntos”.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 32

3 ESPECIFICACIÓN DEL TRABAJO

En este capítulo se presenta la especificación del trabajo, con una estructura y

contenidos inspirados en los criterios y recomendaciones que establece la norma UNE

157801:2007 - “Criterios Generales para la elaboración de proyectos de Sistemas de

Información”.

3.1 Requisitos iniciales

En esta sección únicamente se determinan los requisitos iniciales a alto nivel,

con objetivo de fijar el aspecto del resultado buscado y utilizarlos como referencia

durante la etapa de validación final. Los requisitos que se han propuesto para el

proyecto se dividirán entre aquellos orientados al desarrollo y aquellos orientados a la

experimentación. En cuanto a los propuestos para el desarrollo son los siguientes:

• Deben generarse ciudades de manera procedural con herramientas

comerciales o algoritmos propios.

• Debe desarrollarse una aplicación para obtener fragmentos de ciudades

sintéticos y etiquetados de forma procedural.

• Deben obtenerse nubes de puntos sintéticas con los fragmentos de ciudades

generados a partir del sensor LiDAR virtual desarrollado en la universidad de

Jaén.

• Debería hacerse un sistema de traducción para adaptar el etiquetado entre

diferentes conjuntos de datos.

Relativo al estudio experimental se tienen los siguientes requisitos:

• Debe ponerse en funcionamiento en los ordenadores del laboratorio un

conjunto de redes neuronales aplicadas a nubes de puntos.

• Debe llevarse a cabo un tratamiento de la información que siga el proceso

KDD.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 33

• Debe realizarse experimentación para estudiar el comportamiento de las

redes para conjuntos de datos reales.

• Debe realizarse experimentación para estudiar el comportamiento de las

redes para conjuntos de datos sintéticos.

• Debería realizarse un estudio del comportamiento de las redes mezclando

datos reales y sintéticos.

• Debería indicarse como podrían mejorarse los resultados, así como la

propuesta de alguna posibilidad para aumentar la eficacia.

3.2 Hipótesis y restricciones

3.2.1 Hipótesis

Como es común dentro de proyectos experimentales que se basan en el

método científico, se presentará un listado de hipótesis iniciales:

1. Hipótesis 1: el comportamiento de las redes obtenido a partir de un

entrenamiento y testeo con nubes de puntos sintéticas generadas con el

LiDAR virtual es similar al obtenido a partir de nubes de puntos reales.

2. Hipótesis 2: el entrenamiento de las redes neuronales con nubes de puntos

reales puede ser sustituido con un entrenamiento alimentado con datos

completamente sintéticos, dando buenos resultados en el testeo con nubes

de puntos reales.

3.2.2 Restricciones

Por su parte, el proyecto inicia con una serie de limitaciones que, aun estando

lejos de llevar al impedimento de los objetivos, sí que condicionarán su ejecución:

1. Restricciones temporales: el TFM se define como una asignatura de 12

créditos, lo que supone que la duración total del proyecto sería inicialmente

de 300 horas, incluyendo todas las etapas del ciclo de vida. No obstante, es

importante comprender que el proyecto es un trabajo que requiere de

investigación, una etapa de desarrollo, arranque de proyectos de otros

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 34

investigadores, entrenamiento de múltiples modelos de machine learning,

experimentación, análisis de resultados, corrección de errores y en

ocasiones cooperación con terceros. Esto se traducirá en que el tiempo

máximo estimado subirá a 600 horas, marcando un límite temporal realista

afrontable por el autor.

2. Hardware limitado: pese a encontrarnos en un laboratorio equipado con

ordenadores especializados y tarjetas gráficas potentes, lo cierto es que

para el entrenamiento de redes neuronales se requiere de mucho tiempo.

Esto puede suponer varios días que, por la restricción temporal recién

descrita, no siempre es factible para todos los experimentos. Añadido a

esto, el coste en memoria también es muy elevado, y no es posible utilizar

algunos datasets completos. Esto supondrá la necesidad de redimensionar

el conjunto de datos para reducir el coste temporal y en memoria asociado

al hardware de trabajo.

3. Conocimientos de partida: el proyecto se comenzó con conocimientos

básicos en redes neuronales obtenidos durante las asignaturas del grado y

del máster. Asimismo, tampoco se tienen grandes conocimientos en Python,

aunque sí que es cierto que se tiene una base. Esto supondrá que el tiempo

dedicado para la fase de investigación será superior.

4. Calidad del fragmentador de ciudades: debido a las limitaciones

temporales y en pro del avance de la fase de experimentación, se dedicara

menos tiempo del total planificado a la interfaz y usabilidad de la aplicación

de fragmentación.

3.3 Riesgo del trabajo

Es muy importante destacar la gran incertidumbre de la que parte este proyecto

en su conjunto, y aunque no es la única vez que se ha comentado y se comentará en

esta memoria, se ha creído conveniente incluir este apartado para desarrollarlo.

No se trata de una mala gestión, ni una mala organización, sino que estamos

ante un problema característico de los trabajos de investigación. El proyecto, como se

irá viendo, está conformado por múltiples fases y cada una de ellas dependiente de

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 35

las demás, por lo que la calidad del conjunto del proyecto depende de la calidad

individual de cada una de estas partes. Dicho esto, se debe saber que se parte de una

generación de entornos procedurales cuya calidad de generación no se conoce al

detalle, un LiDAR virtual que se busca validar y unas redes neuronales que, pese a

haber sido probadas, no podrán utilizar la cantidad de datos necesarios para obtener

resultados óptimos porque no se dispone de suficientes recursos.

Esta incertidumbre se vería minimizada si no se contara, sobre todo, con la

restricción temporal destacada en los apartados anteriores. Igualmente, y

completamente en relación con la restricción temporal, se podría contar con

entrenamientos más extensos, así como entrenamientos hechos desde otros equipos

o servidores más potentes correctamente configurados y preparados para la ejecución

del proyecto, algo que como requiere de bastante tiempo no se ha podido realizar.

3.4 Estudio de alternativas y viabilidad

Durante el proyecto se han tenido que discriminar el uso de algunas

herramientas a favor de otras, ya sea para la generación procedural, el etiquetado de

fragmentos de ciudades, el entorno de trabajo o la elección entre los proyectos de

redes neuronales disponibles. En este apartado vamos a describir las principales

alternativas analizadas para su posterior elección.

3.4.1 Generación procedural

Sin duda la primera decisión del proyecto fue la elección del software para la

generación procedural de ciudades. A lo largo del primer periodo de investigación se

propusieron una gran cantidad de posibilidades, pero se destacarán aquellas que

fueron más influyentes.

3.4.1.1 Procedural City Generator

Procedural City Generator [27] es un proyecto disponible en GitHub como

software libre y gratuito que permite crear mapas que pueden descargarse como

fichero PNG, mapas de alturas e incluso descargar directamente el modelo

particionado en STL. El generador se basa en L-System y es capaz de generar

automáticamente grandes distribuciones de calles que pueden replicar la distribución

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 36

de ciudades como las de París o Barcelona. Es un proyecto que permite algo de

personalización, aunque no se obtienen resultados completamente detallados. La

geometría devuelta es simple y tampoco usa texturas, siendo su punto fuerte la

capacidad de generar grandes puertos carreteros introduciendo manzanas, edificios,

zonas para parques, etc.

Ilustración 3.1: Ciudad creada con Procedural City Generator

Para utilizar este trabajo sería necesario hacer un script que unifique las salidas

de este proyecto en un solo modelo, incluyendo texturas. Para dar más realismo

además habría que incluir algo de ruido, personas, vehículos, mobiliario urbano, etc.

Ello se podría hacer desde Blender [28], pero aun así supone la problemática de

detectar la orientación de las mallas pertenecientes a aceras y carreteras.

3.4.1.2 ArcGIS CityEngine

ArcGIS CityEngine [29] es una de las herramientas de pago más avanzadas

para generar ciudades procedurales en 3D. Con este programa se pueden crear

grandes entornos urbanos interactivos e inmersivos y es por ello que es ampliamente

usado en la creación de ciudades realistas para simulaciones, videojuegos y hasta en

planificación urbana. Usa un sistema basado en reglas personalizable que permite

controlar el estilo arquitectónico, la densidad de las construcciones o el trazado de las

calles, entre otras muchas opciones, así como también proporciona la generación a

partir de imágenes por satélite.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 37

Para usar este software es indispensable, aunque se pueda probar de manera

gratuita, comprar una licencia. Ya en posesión de una licencia se podría utilizar la

aplicación durante más tiempo y crear ciudades con relativa facilidad. Es una

herramienta potente con la única desventaja de que, al ser software propietario hay

menos documentación publicada en Internet.

3.4.1.3 RailClone

Este plugin [30] para Autodesk 3ds Max permite crear ciudades con un amplio

número de objetos, creando la estructura de los mismos sobre la base de los

parámetros personalizables. De esta forma, se puede automatizar con reglas la

creación de carreteras, puentes, rieles, edificios, cercas, muros o señales. Es muy

utilizado en el ámbito de la arquitectura, la visualización de exteriores, el diseño urbano

y en la creación de escenarios para películas y videojuegos.

Ilustración 3.2: Sistema de nodos de RailClone

Para el uso de este plugin habría que comprar una licencia para usar 3ds Max,

y posteriormente comprar Railclone. Este plugin no permite la automatización

mediante scripts, sino que usa un sistema de nodos (Ilustración 3.2) que recuerda al

de otras aplicaciones como Blender.

3.4.2 Fragmentación de ciudades

Tras la obtención de ciudades existen dos opciones para la recolecta de nubes

de puntos; la primera es navegar sobre las ciudades con el sensor LiDAR sintético, y

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 38

la segunda es fragmentar las ciudades. Dado que el nivel de detalle de estas ciudades

es muy elevado, encontrándose decenas de millones de triángulos en los modelos, la

decisión más oportuna es la de la fragmentación. Esto permitirá al LiDAR trabajar con

trozos manejables a la vez que el proceso se podrá aprovechar también para etiquetar

cada elemento independiente del escenario según el conjunto de etiquetas

seleccionado. Por simplicidad, se tomó la decisión de utilizar un motor de gráfico ya

existente para evitar trabajar a muy bajo nivel, algo que supondría mucho tiempo de

desarrollo. De esta manera se tuvo que elegir entre los 2 motores más conocidos

actualmente.

3.4.2.1 Unity 3D

Unity [31] ha evolucionado a lo largo de estos años siendo capaz de hacer

posible el desarrollo dentro de él de videojuegos con grandes estándares de calidad,

grandes campañas de marketing y publicados por grandes estudios, lo que se conoce

como juegos de triple A. El trabajo flexible, el amplio conjunto de herramientas, la

curva de aprendizaje accesible y la gran cantidad de documentación en Internet ha

incentivado a que sea uno de los motores de videojuegos más populares actualmente.

Es una gran opción para nuestro proyecto porque permite importar y modificar

de forma automática los modelos. Desde Unity se podría crear una aplicación que

facilitase la fragmentación automática de las ciudades creadas anteriormente con

scripts en C#, así como también se podría manejar el proceso de etiquetado. Esta

opción es gratuita usando la versión de Unity Personal, versión en la que los

desarrolladores pueden crear aplicaciones sin pago alguno mientras que las

ganancias no superen los 100,000 dólares anuales. Como el proyecto no plantea

vender la aplicación desarrollada no debería haber problemas en lo referente a la

versión gratuita, de la misma manera que tampoco debería haber problemas

relacionados con el sistema operativo utilizado en el ordenador del laboratorio, pues

Unity es un motor multiplataforma.

3.4.2.2 Unreal Engine

Unreal Engine [32], desarrollado por Epic Games [33], es uno de los motores

de videojuegos multiplataforma más potentes de la actualidad. Desde su creación en

1998, ha evolucionado hasta su versión 5, que ofrece impresionantes resultados

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 39

gráficos y mejoras significativas para la creación de mundos abiertos en comparación

con su predecesor, Unreal Engine 4. Esta última versión destaca especialmente en el

desarrollo de videojuegos 3D, ya que permite trabajar en tiempo real con escenas de

mallas muy detalladas y aporta innovadoras mejoras en el sistema de iluminación.

El trabajo en Unreal Engine 5 se realiza principalmente en el lenguaje de

programación C++. Sin embargo, también ofrece la alternativa de Blueprints, una

herramienta visual que facilita la creación de código mediante nodos y conexiones,

ideal para usuarios con conocimientos básicos de programación. Al igual que Unity,

Unreal Engine 5 sería adecuado para crear la aplicación para fragmentación y

etiquetado de ciudades, proporcionando un rendimiento y velocidad de ejecución

mejorados a cambio de un desarrollo algo menos acelerado.

Cabe mencionar que, a pesar de contar con una comunidad sólida, aprender a

utilizar Unreal Engine suele tener una curva de aprendizaje más pronunciada en

comparación con Unity. A ello hay que sumarle las exigencias de recursos, que son

mucho más elevadas.

3.4.3 Redes neuronales

3.4.3.1 Proyecto Super Point Transformer

Este proyecto [34] presenta una red con una arquitectura basada en

Transformers de superpuntos y es funcional para la segmentación de nubes de puntos

en escenas 3D. La metodología utiliza un algoritmo para dividir las nubes de puntos

en una estructura jerárquica de superpuntos, lo que hace que el preprocesamiento

sea mucho más rápido. Todo ello viene explicado en detalle dentro de su artículo,

“Efficient 3D Semantic Segmentation with SuperPoint Transformer” [35].

Es un proyecto escrito en Python y funcional desde sistemas operativos Linux

y con la versión de CUDA 11.8 o 12.1. Sus creadores utilizaron equipos con 64GB de

RAM (Random Access Memory), tarjetas gráficas NVIDIA GTX 1080Ti 11G, NVIDIA

V100 32GB y NVIDIA A40 48Gb, y con ellos consiguieron experimentar con conjuntos

tales como S3DIS [36], Semantic KITTI y DALES [37].

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 40

3.4.3.2 Proyecto PointNet2 Semantic

Este proyecto [38] es una versión modificada de PointNet++ enfocada en la

segmentación semántica para comparar tres conjuntos de datos: Scannet [39],

Semantic-8 [40] y un conjunto de datos aéreo LIDAR de Bertrand Le Saux. Esta

investigación tenía también marcado como objetivo comparar esos conjuntos de datos

con SnapNet [41] (otro proyecto destacado de segmentación semántica).

Este se ejecuta en Ubuntu 16.04 y fue probado con 3 GTX Titan Black y una

GTX Titan X, así como también en otras tarjetas gráficas como la GTX 860m. Entre

otras instalaciones necesarias, se destaca Python 2.7, CUDA 8.0 y TensorFlow 1.2.

En GitHub se pueden encontrar enlaces para descargar los datos preprocesados y

también se ofrecen instrucciones para procesar datos en bruto y para llevar a cabo el

entrenamiento de los modelos.

Al igual que el anterior proyecto, es un trabajo es muy interesante, sin embargo,

durante la ejecución del script de entrenamiento de la red surgía un problema

relacionado con daemons que no permitía terminar el proceso.

3.4.3.3 Proyecto RepSurf

Este otro proyecto es sin duda el más interesante y es por ello que se dedicó

más tiempo para intentar arrancarlo. Surface Representation for Point Clouds [42],

resumido como RepSurf, se trata de un trabajo de investigación que propone una

nueva forma de representar nubes de puntos que permite capturar explícitamente la

estructura geométrica local detallada. Explora 2 variantes, pero a lo largo de toda la

investigación siempre nos referiremos a la variante Umbrella RepSurf.

Este proyecto disponible desde GitHub incorpora la red de PointNet++, la red

Point Transformer y el módulo propio de Umbrella RepSurf basado en una versión

ligera de PointNet++. Presentado en su artículo, “Surface Representation for Point

Clouds” [43], pero visible también desde el GitHub están algunos de sus resultados

con datasets como S3DIS.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 41

Los desarrolladores iniciaron el proyecto en Linux utilizando Python 3.7,

PyTorch 1.6.0, CUDA 10.1 y GCC 7.2.0 entre otras versiones destacables. En el caso

de este trabajo, se consiguió arrancar utilizando versiones similares dadas las

diferencias en hardware.

3.4.4 Entorno de trabajo

En lo referente al sistema operativo, lo cierto es que no había demasiada

posibilidad de elección dentro del laboratorio, pues todos los equipos usaban

Windows. Sin embargo, la mayoría de proyectos de redes neuronales que se

encontraban en GitHub estaban preparados para ejecutarse sobre diferentes entornos

de Linux. Una posible solución podría haber sido instalar mediante una partición del

disco la versión necesitada de Linux, sin embargo, esto era demasiado costoso

teniendo en cuenta que dicha versión cambiaba entre proyectos. Es por ello que

surgieron varias posibilidades: utilizar máquina virtual o usar el subsistema de

Windows para Linux.

3.4.4.1 Máquina virtual con VirtualBox

La primera opción, la más conocida para la mayoría, es la de crear una máquina

virtual para simular un equipo con la versión de Linux requerida. Una máquina virtual

es un entorno virtualizado que actúa como un sistema informático independiente

dentro de un mismo ordenador en el que se puede instalar y ejecutar de forma aislada

como un sistema operativo junto con sus programas, como si fuera un segundo

ordenador. Es frecuente el uso de estas para probar software, realizar experimentos

y ejecutar aplicaciones en otros sistemas operativos sin comprometer al sistema

anfitrión.

Todo ello se puede hacer con VirtualBox [44], un software de virtualización

gratuito y de código abierto desarrollado por Oracle que se ha estudiado a lo largo de

la carrera. Se puede ejecutar múltiples sistemas operativos (como Windows, Linux o

macOS) en un ordenador host sin necesidad de alterar su sistema operativo principal.

Sin embargo, esto supone por un lado dividir los recursos del equipo servidor y por

otro incrementar el uso de estos para la superior gestión de procesos. Con esta

filosofía de uso de los recursos, es seguro que habrá una bajada importante de

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 42

rendimiento a la que hay que sumarle la correcta configuración de la tarjeta gráfica

con CUDA. En efecto, estos proyectos usan CUDA para poder acceder a los recursos

de la tarjeta gráfica, por lo que debe antes asociarse a VirtualBox. Sin embargo, esta

funcionalidad es de pago, por lo que se requeriría antes de pagar la extensión.

3.4.4.2 Subsistema de Windows para Linux

Esta opción, el subsistema de Windows para Linux (WSL), es una funcionalidad

en Windows que permite ejecutar distribuciones de Linux directamente sobre el

sistema operativo Windows. Para ello, WSL utiliza tecnología de virtualización ligera

para ejecutar un kernel de Linux completo dentro de contenedores aislados en una

máquina virtual administrada de forma automática. Ello proporciona un rendimiento de

sistema de archivos mejorado y una compatibilidad completa con llamadas de sistema

de Linux, lo que permite una experiencia Linux más auténtica dentro de Windows.

Con esta solución, no se requeriría de aplicaciones intermedias para la

virtualización, sino que sería más directo desde la consola. Además, al estar integrado

podría accederse desde la interfaz del gestor de archivos de Windows a los datos de

la virtualización de Linux. Es una opción ideal y para crear una máquina virtual solo se

requiere, tras la instalación de la distribución, del comando: “wsl -d Ubuntu-20.04”.

3.5 Descripción de la solución propuesta

En un inicio se decidió intentar utilizar el proyecto Procedural City Generator

como base para un algoritmo propio de generación de ciudades. No obstante, durante

un pequeño periodo de desarrollo se llegó a la conclusión de que iba a demorar

demasiado tiempo construir el algoritmo y dejaría a la etapa de experimentación sin

tiempo suficiente. Es por ello que, pese a ser gratuito fue la primera opción en

descartarse. Tras eliminar esta opción, las siguientes alternativas más interesantes

disponibles eran de pago, por lo que se revisó si la universidad poseía alguna licencia

de dichos software. Una vez se solicitó esa información se conoció que en efecto la

universidad poseía licencias de uno de los software, CityEngine, por lo que se

determinó finalmente esa opción como la más apropiada.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 43

Teniendo en cuenta que el objetivo de este trabajo es experimental, se decidió

que la etapa de desarrollo de la aplicación auxiliar se hiciera con Unity. De darse el

caso de seleccionar Unreal Engine, sería necesario programar la aplicación con C++

o Blueprints dentro de un motor sin experiencia previa por parte del autor, lo que podría

convertirse potencialmente en un problema temporal que repercutiese en los

resultados experimentales del trabajo. De esta manera, Unity se convirtió en la opción

más conservadora, pues se tenía mucha experiencia en el motor, lenguaje y, aunque

es posible que Unreal Engine sea capaz de gestionar mejor grandes cantidades de

geometría, la experiencia nos dice que Unity también es capaz de gestionar los

modelos que se utilizarán dentro de este trabajo.

En cuanto al proyecto para el uso de redes neuronales, con muchas dificultades

se inició el proyecto RepSurf que, frente al resto de las opciones, era el más

interesante. Aunque es cierto que necesitaba algunas modificaciones, es importante

mencionar que es el que más redes permite ejecutar sin cambiar de proyecto, por lo

que a la larga va a ahorrar mucho tiempo.

Finalmente, relativo al entorno de trabajo, se decidió usar el subsistema de

Windows para Linux. Es la opción más razonable dado que es muy fácil de arrancar,

es gratuito y también más eficiente, algo muy importante en procesos que pueden

demorarse días si no se usan correctamente los recursos.

3.6 Alcance

El proyecto incluirá los siguientes entregables:

1. Fragmentador de ciudades: será un proyecto de Unity 3D creado en la

versión de Unity 2023.2.12f1 que se compone de una única escena

preparada para que con un mínimo de modificaciones se pueda cargar y

fragmentar una ciudad. El proyecto incluye además el archivo git donde se

puede comprobar las actualizaciones que se han ido implementando. Cabe

destacar además que todo el código propio viene explicado al detalle con

comentarios, y con archivos README.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 44

2. Proyecto de redes neuronales adaptado: se trata del proyecto RepSurf

modificado para poder utilizar cualquier tipo de dataset. Los cambios y los

nuevos scripts, así como las adaptaciones o los elementos a tener en cuenta

de cualquier tipo vienen especificados igualmente con comentarios dentro

del código y con archivos README.

3. Dataset sintético: es un conjunto de nubes de puntos obtenidas del sensor

LiDAR virtual tras ubicarlo en múltiples ciudades virtuales generadas con

reglas distintas. Estas nubes de puntos son las que se han utilizado para la

fase de experimentación, encontrándose en formato PLY y conteniendo un

etiquetado personalizado.

4. Fragmentos sintéticos: será un conjunto de modelos 3D guardados en

formato FBX que contendrá los fragmentos de ciudades generados a lo

largo del proyecto.

5. Registros: incluirá un conjunto de archivos de registro que muestran la

información mostrada por la terminal a lo largo de cada uno de los

experimentos. Habrá registro tanto de la actividad del entrenamiento como

de la de testeo.

6. Modelos: guardará los archivos CKPT (checkpoints del modelo) generados

y permitirá ejecutar las pruebas de evaluación sin la necesidad de realizar

nuevamente los entrenamientos.

7. Documentación: se trata del documento actual y de numerosos archivos

README incluidos junto a todos los scripts propios tal y como se ha

adelantado en puntos precedentes. Como es de esperar, ello sirve para

explicar en detalle los puntos más importantes del proyecto, así como para

para hacerlo más usable y ayudar a los próximos investigadores que

continúen este proyecto.

8. Vídeo: mostrará brevemente el funcionamiento del proyecto, en su

conjunto, para poder ver el comportamiento del mismo sin la necesidad de

ejecutar nada. Esto ahorra mucho tiempo para aquellos que solo deseen

consultar los resultados finales.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 45

3.7 Tecnologías utilizadas

Sintetizando, se procede a enumerar en los siguientes subapartados todas las

tecnologías y herramientas utilizadas en este proyecto junto con una breve

descripción.

3.7.1 Software para gráficos

• Unity: es el motor gráfico escogido para crear la aplicación que fragmenta y

etiqueta las ciudades generadas proceduralmente.

• Blender: software especializado en modelado 3D y animación que se utiliza

para visualizar archivos en formato FBX y OBJ. También se utilizó durante el

periodo de investigación y pruebas para el intento de creación del algoritmo

procedural de ciudades propio.

• CityEngine: herramienta que permite crear fácilmente ciudades de forma

procedural partiendo de un conjunto de reglas personalizable.

• MeshLab: visor principal utilizado para mostrar las nubes de puntos.

3.7.2 Programación y lenguajes

• Visual Studio 2022: se usa como entorno de desarrollo integrado (IDE) para

escribir y depurar código, principalmente en C# y Python.

• Python: lenguaje principal en el que se encuentra programado el proyecto

RepSurf y el script de procesado de nubes de puntos.

• PyTorch [45]: biblioteca utilizada en el proyecto RepSurf para construir y

entrenar los modelos de aprendizaje profundo.

• C#: lenguaje de programación utilizado en el desarrollo de la aplicación para

fragmentar y etiquetado de ciudades hecha en Unity.

3.7.3 Entornos virtuales

• Anaconda: se utiliza en el proyecto para gestionar entornos de desarrollo y

dependencias de Python, facilitando la instalación de librerías y la ejecución

de código.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 46

• Subsistema de Windows para Linux (WSL): se utiliza para ejecutar

distribuciones Linux sin necesidad de máquinas virtuales intermedias, y

hacerlo en su lugar desde la propia máquina de Windows. Es imprescindible

para iniciar los proyectos de redes neuronales.

3.7.4 Documentación

• Word: editor de texto utilizado para la redacción esta memoria.

• Excel: es la aplicación con la que se organizaban los resultados de los

experimentos en forma de tablas y gráficos. Sus hojas de cálculo fueron

usadas también para la creación y modificación de las tablas de etiquetas de

la aplicación fragmentadora.

• Visual Paradigm: esta herramienta se empleó en la creación de ciertos

diagramas del proyecto y también ofrece una versión en línea que facilita su

acceso.

• Umlet: una aplicación para creación y edición de diagramas. La razón

principal de su uso es el diseño obtenido a partir de simples entradas y por

su precio gratuito.

• Google Keep: es una herramienta para tomar notas. Fue usada para apuntar

ideas a lo largo del proyecto.

• Mendeley Cite: extensión para Microsoft Word que facilita la gestión de la

bibliografía.

• Google Drawings: es una herramienta Google para hacer dibujos online con

posibilidad de exportarlos en formato PNG. Es utilizada para hacer algunos

diagramas propios de esta memoria.

3.8 Metodología

La elección de una correcta metodología para llevar a cabo el ciclo de vida del

proyecto o PMLC (Project Management Life Cycle) es uno de los pasos más

importantes durante la dirección de un proyecto. Toda metodología debe de tener en

cuenta la complejidad y la incertidumbre del proyecto, y es por ello que a nivel teórico

se distinguen las siguientes 3 principales vertientes:

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 47

• TPM (Traditional Project Management): utilizada para proyectos poco

novedosos y con objetivos claros donde no se espera un grado alto de

complejidad.

• APM (Agile Project Management): utilizada para proyectos donde teniendo

claro los objetivos, no es seguro la manera de alcanzarlos.

• XPM (Extreme Project Management): utilizada para proyectos altamente

complejos donde no se tienen completamente claros los objetivos ni las

soluciones.

Por otro lado, desde el punto de vista del ciclo de vida del desarrollo de software

encontramos la necesidad de seleccionar la categoría SDLC (Software Development

Life Cycle) a usar, que dependiendo del conocimiento técnico requerido en el alcance

del proyecto se moverá desde un caso de categoría lineal (total certeza) hasta la

categoría extrema (total incertidumbre).

Teniendo ahora en cuenta estas bases, estamos preparados para seleccionar

una metodología correcta para nuestro proyecto experimental. Dado que este tipo de

proyectos son de investigación y novedosos, es razonable pensar que, aunque hay

algunos objetivos claros, las soluciones no lo son tanto. Esto se traduce en un enfoque

principal para el proyecto ubicado en la vertiente AMP con aproximación a la vertiente

XPM. De igual manera, vista la incertidumbre del proyecto de cara al desarrollo

debemos plantear una categoría SDLC que nos permita cambiar de rumbo del

proyecto a bajo coste, lo que nos sugiere hacer uso de metodologías ágiles frente a

metodologías tradicionales.

3.8.1 Metodología general del ciclo de vida del proyecto

La metodología general del proyecto será Project Milestones, una metodología

basada en hitos. Los hitos marcan puntos de referencia en el cronograma del proyecto

con los que se identifica cuando una o varias actividades han sido concluidas para así

iniciar otra nueva. Estas marcas de comprobación son muy útiles para supervisar los

plazos, identificar fechas importantes y reconocer potenciales cuellos de botella de un

proyecto.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 48

Aplicar esta metodología dentro del proyecto actual es una buena opción para

mantener un correcto ritmo y evitar retrasos con las fechas y entregables. Dado que

la metodología permite incluir nuevos hitos durante el proyecto, ésta se adapta sin

problemas a la situación de incertidumbre de la que se parte, siendo fácil realizar

modificaciones y hacer cambios de requisitos de manera acertada. En la Ilustración

3.3, se plantea un diagrama de partida en el que se ven los 8 hitos de los que

inicialmente se conforma este proyecto experimental.

Ilustración 3.3: Hitos siguiendo metodología Project Milestones

Es importante mencionar que el proceso de experimentación seguirá el

esquema definido en el KDD, teniendo en cuenta: la recolección de los datos, el

preprocesado, la transformación, la minería, la evaluación y la interpretación de los

resultados.

3.8.2 Metodología dentro del desarrollo

Cumplir con todas las especificaciones es complicado teniendo en cuenta la

gran restricción temporal de la que se parte. Esa restricción aumenta mucho la

incertidumbre y provoca que las cosas que no se hagan sean principalmente por falta

de tiempo. Si se dispusiese de tiempo ilimitado, se podría aplicar una técnica

tradicional con la que se podrían llegar a cubrir todas las especificaciones.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 49

Como no es el caso, ha de trabajarse con una metodología ágil para el

desarrollo, eligiendo entre las posibles la conocida como Extreme Programming. Esta

es muy popular y se centra en la velocidad y la simplicidad. La ideología de este

modelo se basa en hacer ciclos de desarrollo muy cortos (sprints) donde se ejecutan

pequeñas partes del proyecto alcanzando una gran calidad al haber sido debidamente

probados. A diferencia de otras metodologías, la programación extrema es muy

disciplinada pues, aunque la documentación ciertamente queda más reducida, se

realizan con frecuencia revisiones y pruebas de código para realizar cambios

rápidamente.

Este método es una buena opción porque potencia la creatividad durante todas

las etapas de desarrollo y en cada uno de sus pequeños sprints. Añadido a esto, al

tratarse de una metodología ágil cuyas bases se fundamentan en el uso de sprints de

muy poca duración y simples, se asegura por un lado que se puede cambiar de rumbo

de proyecto a bajo coste y por otro lado se asegura la simplicidad de cada sprint, pues

el problema se ve obligado a desglosarse en subproblemas más pequeños y fáciles

de resolver y depurar.

3.9 Estimación del tamaño y esfuerzo

Ya que el presente proyecto es un TFM, no existen restricciones de tipo

económico, sino de tipo temporal establecido inicialmente en 600 horas. Por

consiguiente, los cálculos de tamaño del proyecto están supeditados el tiempo

disponible. En cuanto al esfuerzo, se dispone de tan un solo efectivo (autor del

trabajo).

Bajo esta base, la estimación del trabajo necesario para completar el proyecto

se hará mediante un desglose en paquetes de trabajo. Cada paquete de trabajo busca

cumplir una serie de objetivos y dicha relación se representa en la Estructura de

Desglose de Trabajo (EDT) de la Ilustración 3.4. La EDT está organizada en 4 niveles,

siendo el primer nivel el más general abarcando todo el proyecto. El segundo nivel

muestra los objetivos del trabajo (definidos en 1 Objetivos del proyecto) y se asocia

con el nivel 3, el cual contiene los 4 paquetes de trabajo que tendrá el trabajo, mientras

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 50

que en su último nivel están las tareas de los paquetes de trabajo, que más adelante

se detallarán.

Ilustración 3.4: EDT del proyecto

A continuación, se mostrarán las tablas de tareas contenidas en los paquetes

de la EDT. Dentro de cada una de ellas se incluirá una descripción e información de

interés, tal como lo es el periodo de tiempo esperado para llevarse a cabo, las

subtareas que la conforman, los miembros implicados, hitos que consiguen,

entregables, etc.

3.9.1 Paquete de trabajo 1: Gestión y coordinación

La importancia de la correcta gestión radica en la buena coordinación para

alcanzar el objetivo 1 del proyecto, donde se hablaba de control y coordinación para

asegurar un correcto avance del proyecto durante todo el ciclo de vida del mismo. Este

paquete se centra en garantizar la adecuada estructuración del proyecto de acuerdo

a la metodología propuesta anteriormente. Está compuesto por las siguientes tareas,

desarrolladas a continuación en sus tablas correspondientes:

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 51

• Tarea 1.1: Reunión con el cliente

• Tarea 1.2: Especificación del trabajo

• Tarea 1.3: Control del proyecto

• Tarea 1.4: Elaboración de la memoria

Tarea 1.1: Reunión con el cliente

Descripción Tarea que busca realizar una serie de tutorías iniciales para la

definición del proyecto a nivel general, planteando los objetivos
iniciales

Miembros Víctor Rodríguez Cano, Alfonso López Ruiz, Rafael Jesús Segura
Sánchez y Carlos Javier Ogayar Anguita

Duración 1 semana

Objetivos Objetivo 1 (O1)

Subtareas No dispone

Hitos y

entregables

No dispone

Tabla 3.1: Tarea 1.1

Tarea 1.2: Especificación del trabajo

Descripción Tarea que busca llevar las ideas planteadas de manera general a

un planteamiento específico para comenzar el proyecto
experimental. Aquí se dejarán claros los requisitos, alcance,
metodología y una estimación del esfuerzo junto con el

presupuesto

Miembros Víctor Rodríguez Cano

Duración 1 semana

Objetivos Objetivo 1 (O1)

Subtareas 1. Definición de requisitos y alcance

2. Definición de metodología

3. Estimación del esfuerzo y presupuesto

Hitos y
entregables

Hito 1 (H1): especificación del proyecto

Entrega 1 (E1): documentación con la información específica del
proyecto planteado

Tabla 3.2: Tarea 1.2

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 52

Tarea 1.3: Control del proyecto

Descripción Tarea que dura todo el periodo de vida del proyecto sin incluir la

memoria del mismo. En ella se busca que la investigación se vaya
llevando de forma correcta, siguiendo plazos, entregando informes
cuando y coordinando las reuniones con personal implicado

cuando se requiera

Miembros Víctor Rodríguez Cano

Duración 6 meses

Objetivos Objetivo 1 (O1)

Subtareas 1. Control y monitorización del trabajo

2. Organización de reuniones de seguimiento

3. Generación periódica de informes

4. Coordinación del proyecto con Alfonso

Hitos y
entregables

No dispone

Tabla 3.3: Tarea 1.3

Tarea 1.4: Elaboración de la memoria

Descripción Tarea que tiene como objetivo finalizar con la entrega de una
memoria que resuma todo el proceso llevado a cabo

Miembros Víctor Rodríguez Cano

Duración 3 meses

Objetivos Objetivo 1 (O1)

Subtareas No dispone

Hitos y
entregables

Hito 8 (H8): cierre del proyecto y conclusiones

Entrega 16 (E16): memoria del proyecto finalizada

Tabla 3.4: Tarea 1.4

3.9.2 Paquete de trabajo 2: Investigación

Este paquete contiene aquellas actividades asociadas a las etapas de

investigación requeridas en el proyecto, así como la prueba de herramientas y de

proyectos. Trata de contribuir para el alcance de los objetivos 2, 3 y 4 del proyecto.

Está compuesto por las siguientes tareas, desarrolladas a continuación en sus tablas

correspondientes:

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 53

• Tarea 2.1: Investigación sobre generación procedural

• Tarea 2.2: Investigación sobre datasets

• Tarea 2.3: Investigación sobre Machine Learning (ML)

Tarea 2.1: Investigación sobre generación procedural

Descripción Tarea destinada a la investigación del estado del arte sobre
técnicas de generación procedural, así como análisis de diferentes

alternativas comerciales para generar entornos urbanos. Dentro
de esta tarea se tiene en cuenta tanto la investigación como el
periodo de pruebas y arranque de las diferentes aplicaciones

Miembros Víctor Rodríguez Cano

Duración 2 semanas

Objetivos Objetivo 2 (O2)

Subtareas 1. Estudio del estado del arte generación procedural

2. Prueba e instalación de herramientas comerciales

Hitos y
entregables

Hito 2 (H2): generador procedural de ciudades

Entregable 2 (E2): informe sobre técnicas y herramientas de

generación con elección de herramienta a utilizar

Tabla 3.5: Tarea 2.1

Tarea 2.2: Investigación sobre datasets

Descripción Tarea orientada a la revisión de los conjuntos de nubes de puntos

LiDAR públicos recopilados de las investigaciones más influyentes
dentro del sector. En esta tarea se tiene en cuenta tanto la
investigación como la descarga y la prueba del dataset

Miembros Víctor Rodríguez Cano

Duración 2 semanas

Objetivos Objetivo 3 (O3)

Subtareas 1. Estudio del estado del arte sobre datasets LiDAR

2. Descarga y prueba de datasets

Hitos y

entregables

Entregable 3 (E3): informe sobre datasets LiDAR públicos

Tabla 3.6: Tarea 2.2

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 54

Tarea 2.3: Investigación sobre Machine Learning

Descripción Tarea cuya meta es obtener una idea clara de los proyectos de ML

que trabajan con redes aplicadas a nubes de puntos LiDAR.
Durante esta tarea no sólo se revisarán las posibles alternativas,
sino que además se intentará arrancar algún proyecto

Miembros Víctor Rodríguez Cano

Duración 1 mes

Objetivos Objetivo 4 (O4)

Subtareas 1. Estudio del estado del arte en ML

2. Arranque de proyecto ML para LiDAR

Hitos y
entregables

Hito 5 (H5): puesta en marcha de proyecto de redes neuronales

Entregable 9 (E9): informe sobre proyectos de Machine Learning

funcionales

Tabla 3.7: Tarea 2.3

3.9.3 Paquete de trabajo 3: Desarrollo

Este paquete contiene las actividades asociadas a la etapa de desarrollo de la

aplicación fragmentadora de ciudades. Dicha aplicación debe fragmentar ciudades y

etiquetar en función de diferentes conjuntos de etiquetas. Trata de contribuir en el

alcance del objetivo 2 del proyecto y seguirá el capítulo 3.8.2 (Metodología dentro del

desarrollo). Está compuesto por las siguientes tareas, desarrolladas a continuación en

sus tablas correspondientes:

• Tarea 3.1: Fragmentación de ciudades

• Tarea 3.2: Etiquetado de fragmentos

• Tarea 3.3: Previsualizador LiDAR

Tarea 3.1: Fragmentación de ciudades

Descripción Esta tarea tiene como objetivo iniciar el desarrollo de una
aplicación en Unity que permita fragmentar ciudades. Tras la

realización de esta tarea debe obtenerse un prototipo capaz de
fragmentar ciudades, sin que sea necesario su etiquetado

Miembros Víctor Rodríguez Cano

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 55

Duración 2 semanas

Objetivos Objetivo 3 (O3)

Subtareas 1. Sistema de instanciación pseudoaleatorizada

2. Desarrollo del objeto fragmentador

Hitos y

entregables

Entregable 5 (E5): prototipo de la aplicación con capacidad de

fragmentar ciudades

Tabla 3.8: Tarea 3.1

Tarea 3.2: Etiquetado de fragmentos

Descripción Esta tarea trata de implementar la función de etiquetado y
conversión entre etiquetas para la aplicación en Unity. Además,
tras esta tarea la aplicación tiene que devolver archivos en XML

que puedan ser leídos por el sensor LiDAR virtual

Miembros Víctor Rodríguez Cano

Duración 2 semanas

Objetivos Objetivo 3 (O3)

Subtareas 1. Gestión y conversión del etiquetado

2. Generación de archivos XML para LiDAR virtual

Hitos y

entregables

Entregable 6 (E6): prototipo de la aplicación con capacidad de

fragmentar y etiquetar ciudades

Tabla 3.9: Tarea 3.2

Tarea 3.3: Previsualizador LiDAR

Descripción Esta tarea busca mejorar la aplicación de Unity para fragmentar y

etiquetar ciudades implementando un previsualizador. Con este se
trata de dar una idea general y aproximada de cómo será la nube
de puntos que se conseguirá con el LiDAR

Miembros Víctor Rodríguez Cano

Duración 1 semana

Objetivos Objetivo 3 (O3)

Subtareas No dispone

Hitos y

entregables

Entregable 7 (E7): aplicación terminada con capacidad de

fragmentar y etiquetar ciudades, con capacidad de devolver una
previsualización de la posible nube de puntos LiDAR

Tabla 3.10: Tarea 3.3

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 56

3.9.4 Paquete de trabajo 4: Experimentación

El último paquete contiene las actividades asociadas a la etapa de

experimentación de esta investigación. Siguiéndose los pasos del proceso KDD se

responderán a los objetivos 3, 4 y 5. Está compuesto por las siguientes tareas,

desarrolladas a continuación en sus tablas correspondientes:

• Tarea 4.1: Recopilación de datos

• Tarea 4.2: Procesamiento de datasets

• Tarea 4.3: Minería de datos

• Tarea 4.4: Evaluación e interpretación

Tarea 4.1: Recopilación de datos

Descripción Esta tarea será la primera dentro del KDD y en ella se deben

recopilar todos los datos que serán utilizados dentro del sistema.
Esto incluye la obtención de datos reales y la obtención de datos
sintéticos, los cuales deben generarse con las herramientas

disponibles

Miembros Víctor Rodríguez Cano y Alfonso López Ruiz

Duración 2 meses

Objetivos Objetivo 3 (O3)

Subtareas 1. Creación de ciudades en CityEngine

2. Fragmentado y etiquetado de ciudades

3. Obtención de nubes sintéticas con LiDAR virtual

4. Obtención de nubes reales de Internet

Hitos y
entregables

Hito 3 (H3): fragmentos etiquetados de ciudades

Hito 4 (H4): dataset de nubes de puntos sintéticas

Entregable 4 (E4): conjunto de ciudades completas sin etiquetar

Entregable 8 (E8): conjunto de fragmentos de ciudades

etiquetadas

Entregable 10 (E10): dataset de nubes de puntos sintéticas

Tabla 3.11: Tarea 4.1

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 57

Tarea 4.2: Procesamiento de datasets

Descripción Esta tarea, la segunda del KDD, sirve para preparar los datos a la

arquitectura, al contexto del problema y a las limitaciones del
LiDAR virtual

Miembros Víctor Rodríguez Cano

Duración 2 semanas

Objetivos Objetivo 3 (O3)

Subtareas 1. Adaptación a la arquitectura

2. Limpieza de datos

3. Reducción de la dimensionalidad

Hitos y
entregables

Entregable 11 (E11): script de procesado, transformación y
limpieza de datos

Entregable 12 (E12): datasets procesados y preparados

Tabla 3.12: Tarea 4.2

Tarea 4.3: Minería de datos

Descripción Esta tarea, la tercera del KDD, tiene como finalidad entrenar los

modelos de redes neuronales con los datos preparados, ya sean
sintéticos, reales o mixtos

Miembros Víctor Rodríguez Cano

Duración 3 semanas

Objetivos Objetivo 4 (O4)

Subtareas 1. Adaptación del proyecto a investigación

2. Parametrización y configuración

Hitos y
entregables

Hito 6 (H6): entrenamiento de las redes neuronales

Entregable 13 (E13): modelos entrenados con datos sintéticos,
reales y mixtos

Tabla 3.13: Tarea 4.3

Tarea 4.4: Evaluación e interpretación

Descripción Esta tarea está orientada a la prueba de los modelos con datos
reales o sintéticos. Para ello se ha planteado un conjunto de 3

experimentos, uno para tomar una referencia y el resto para
intentar validar las hipótesis del proyecto

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 58

Miembros Víctor Rodríguez Cano

Duración 2 semanas

Objetivos Objetivo 5 (O5)

Subtareas 1. Experimento 1 (base)

2. Experimento 2 (hipótesis 1)

3. Experimento 3 (hipótesis 2)

Hitos y
entregables

Hito 7 (H7): evaluación de los modelos

Entregable 14 (E14): resultados de los entrenamientos

Entregable 15 (E15): informe del análisis de los resultados

Tabla 3.14: Tarea 4.4

3.10 Planificación temporal

Dado que el proyecto comenzó con su planteamiento en el mes de enero y se

prevé que termine para el mes de octubre con la finalización de la documentación, la

planificación vendrá dada para organizar el tiempo en el periodo de 10 meses que,

teniendo en cuenta las vacaciones de verano, quedará reducido a unos 9 meses.

Se tendrá en cuenta en el diagrama de Gantt que vemos en la Ilustración 3.5

los siguientes periodos asociados a los paquetes de trabajo:

• Periodo del paquete 1 (Gestión y coordinación): incluye el tiempo

transcurrido para llevar a cabo las reuniones con los tutores del proyecto, la

especificación de objetivos, hipótesis, restricciones, requisitos iniciales del

proyecto y alcance. Dicho tiempo se espera que sean alrededor de 2

semanas. También se incluye en el periodo aquel tiempo destinado al control

del proyecto y a la escritura de la documentación.

• Periodo del paquete 2 (Investigación): periodo dedicado al estudio del

estado del arte, lectura de artículos y alternativas para enfocar una correcta

solución. Esto no solo incluye los tiempos de investigación, sino que también

contiene los tiempos de prueba de software para generación procedural,

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 59

búsqueda de conjuntos de datos reales y arranque de proyectos de redes

neuronales.

• Periodo del paquete 3 (Desarrollo): incluye todo el proceso de desarrollo de

la aplicación para obtención de ciudades etiquetadas. Dado que el proyecto

utiliza una metodología ágil y esta planificación fue ideada al inicio del

proyecto, los detalles de las iteraciones realizadas para llevar a cabo el

desarrollo planteado se desarrollarán en las secciones posteriores. Es

importante mencionar que esta etapa se llevará a cabo concurrentemente

con la creación de ciudades procedurales mediante la herramienta

seleccionada debido a que de esa manera se podrán hacer pruebas durante

el desarrollo.

• Periodo del paquete 4 (Experimentación): es un periodo sumamente

importante, pues en él este proyecto cobrará sentido. Aquí se llevará a cabo

todo el proceso del KDD y se obtendrán respuestas a las hipótesis

formuladas. Lo más destacable dentro de este periodo es la reserva de

tiempo que se hace debido a la incertidumbre para la tarea de obtención de

nubes sintéticas, pues es una tarea que requiere mayor coordinación. Dicha

tarea se hará de forma concurrente mientras se prueban proyectos de ML.

Ilustración 3.5: Calendario del proyecto

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 60

3.11 Presupuesto

Valorando las anteriores especificaciones del proyecto ahora se presentará el

presupuesto, el cual se desglosará en 2 partes: coste del material utilizado y coste del

personal.

Material Precio (€) Amortización
(€/mes)

Tiempo de
uso (meses)

Coste (€)

Equipamiento hardware

Equipo con 3600TI 1200 20 4 80

Equipo con A4500 3700 61,67 2 123,34

Periféricos (MK370

Combo for
Business)

49,99 0,83 6 4,98

Periféricos

(monitor Keep Out)

79,90 1,33 6 7,98

Portátil ASUS

ROG STRIX G15

1299,99 21,66 9 194,94

Periféricos (ratón

Logitech G402)

45,75 0,76 9 6,84

Disco duro 1TB
TOSHIBA

69,99 1,17 9 10,53

Software

Windows 10/11 144,99 2,42 15 (4+2+9) 36,30

Unity 3D 0 0 2 0

CityEngine 1000 16,67 1 16,67

Visual Studio 2022 0 0 6 0

Microsoft Office 149,99 2,50 3 7,50

MeshLab 0 0 3 0

LiDAR virtual 0 0 1 0

Blender 0 0 1 0

SmartGit 0 0 6 0

Umlet 0 0 3 0

Visual Paradigm 0 0 3 0

TOTAL 489,08

Tabla 3.15: Costes de material

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 61

Como vemos en la tabla, se tiene en cuenta para los cálculos la amortización

parcial de los componentes hardware y software, asumiendo un periodo de

amortización de 5 años.

Además, se debe considerar el coste del personal, para lo cual usaremos

estimaciones salariales obtenidas de la conocida plataforma InfoJobs [46]. Los

cálculos se han ajustado según la cantidad de horas y el rol específico, añadiendo

también un porcentaje adicional para cubrir la seguridad social, que representa

aproximadamente un 33% del salario bruto mensual del empleado.

Tarea Horas Rol Salario
(€/h)

Seguridad
social (€)

Coste (€)

Análisis y diseño 30 Analista 24,38 241,36 972,76

Investigación 120 Programador

(senior)

20,32 804,67 3243,07

Programación 100 Programador
(senior)

20,32 670,56 2702,56

Procesamiento
de datos

80 Científico de
datos

23,36 616,70 2485,50

Experimentación
con ML

160 Ingeniero en
IA

26,28 1387,58 5592,38

Documentación 100 Programador
(junior)

20,32 670,56 2702,56

Testeo 10 Probador 17,83 58,84 237,14

TOTAL 17935,97

Tabla 3.16: Costes de personal

Como último aporte, se sumarán el coste del material y el coste del personal,

incorporando un sobrecoste del 10% justificado con los gastos indirectos.

Concepto Coste (€)

Gastos en material 489,08

Gastos en personal 17935,97

Gastos indirectos 1842,51

TOTAL GLOBAL 20267,56

Tabla 3.17: Costes totales

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 62

Por tanto, nuestro proyecto tendría un precio de 20267,56€

3.12 Visión general del proyecto

En la Ilustración 3.6 se trata de representar el flujo de trabajo del proyecto de

una manera muy clara, concisa y visual. En él se observa como el proyecto inicia con

la creación de un conjunto de ciudades de forma procedural haciendo uso de la

herramienta de CityEngine. Una vez conseguidas las ciudades, se fragmentarán y

etiquetarán con una aplicación propia que se desarrollará en Unity 3D. Dichos

fragmentos serán enviados a un LiDAR virtual y, en colaboración con Alfonso se

creará un nuevo dataset de nubes de puntos sintéticas, Synthetic Cloud 3D. Así se

tendrá un dataset sintético propio, y un dataset de datos reales (que se descargará de

Internet) tomados con un sensor LiDAR real en ciudades existentes. De manera

coordinada y tras el requerido procesamiento de los datos, ambos datasets se

enviarán a un grupo de redes neuronales y se harán 4 experimentos con cada una

ellas, siendo estas PointNet++, Point Transformer y Umbrella RepSurf.

Ilustración 3.6: Flujo de trabajo del proyecto

 Centrándonos en los experimentos, el experimento 1 buscará probar las redes

con datos únicamente reales y sus resultados serán la referencia para validar las

hipótesis con el resto de experimentos. El experimento 2 trata de comprobar la primera

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 63

hipótesis propuesta mediante el entrenamiento y prueba del modelo con datos

sintéticos. El experimento 3 intenta validar la segunda hipótesis mediante el

entrenamiento con datos sintéticos y la prueba del modelo con datos reales.

Finalmente, el experimento 4 será un experimento extra para intentar validar una

hipótesis adicional. En dicho último experimento se tomarán para el entrenamiento

datos sintéticos en su mayoría, junto con unos pocos datos reales (conjunto mixto), y

se evaluará el modelo con datos reales.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 64

4 GENERADOR DE FRAGMENTOS DE CIUDADES

En esta sección se describe la etapa de desarrollo de software que se ha tenido

que llevar a cabo para crear una aplicación en Unity que permita fragmentar y etiquetar

ciudades. Esto son acciones necesarias que no se podían hacer desde la herramienta

de CityEngine y sin ellas el sensor LiDAR virtual no funcionaría correctamente. La

necesidad de fragmentar las ciudades viene condicionada por el tamaño de las

mismas (en número de triángulos) y el soportado por el sensor, mientras que la

necesidad de etiquetar la ciudad es imprescindible para que los puntos de la nube

devuelta por el LiDAR puedan asociarse a alguna clase (sin esta relación las redes no

podrán entrenar).

4.1 Diseño inicial

En este capítulo se busca definir el funcionamiento de la aplicación y establecer

sus requisitos iniciales. A través de la etapa de análisis y diseño, se crearán las bases

fundamentales para el desarrollo. El objetivo de este proceso es obtener un diseño

preliminar que se irá refinando a lo largo de los sprints del desarrollo.

4.1.1 Especificaciones del sistema

A continuación, se presentará la especificación detallada de los requisitos

tomados al inicio del proyecto durante las reuniones con el cliente. Para definir los

requisitos funcionales elaborados utilizaremos la plantilla dada por la Tabla 4.1.

Identificador: Título

Título Nombre descriptivo

Descripción Detalle del requisito e información adicional

Prioridad Alta/Media/Baja

Tabla 4.1: Plantilla para los requisitos

4.1.1.1 Extracción de requisitos funcionales

Este tipo de requisitos describe el comportamiento esperado del sistema,

especificando las funciones y acciones que debe ser capaz de ejecutar. El proyecto

comenzará con los siguientes requisitos funcionales:

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 65

RF-01: Botón de procesado de la ciudad

Título Botón de procesado de la ciudad

Descripción La aplicación tendrá un único botón que se ocupará de iniciar
todo el proceso automáticamente, incluyendo la fragmentación

de ciudades, etiquetado, generación de XMLs y simulación de
nubes de puntos.

Prioridad Alta

Tabla 4.2: RF-01

RF-02: Fragmentar modelos de ciudades

Título Fragmentar modelos de ciudades

Descripción El sistema fragmentará modelos de ciudades de forma
pseudoaleatorizada dado un radio y una cantidad de vacío
máxima permitida. No se permitirá que en una misma ejecución

haya fragmentos repetidos

Prioridad Alta

Tabla 4.3: RF-02

RF-03: Etiquetar mallas

Título Etiquetar mallas

Descripción El sistema detectará la textura de cada malla del objeto inicial y
le asociará una etiqueta y un material según unas tablas de
conversión. La etiqueta se podrá traducir a otro conjunto

soportado por la tabla de conversión (Toronto-3D, Semantic3D,
Semantic KITTI o estándar LAS)

Prioridad Alta

Tabla 4.4: RF-03

RF-04: Generar archivos para LiDAR virtual

Título Generar archivos para LiDAR virtual

Descripción Deberán generarse archivos legibles por el LiDAR virtual tras el
etiquetado de los fragmentos de ciudades. Para esto se seguirá
el formato XML en el archivo de etiquetas y en el archivo de

materiales, y el formato FBX para el fragmento de ciudad

Prioridad Alta

Tabla 4.5: RF-04

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 66

RF-05: Previsualizar nubes LiDAR

Título Previsualizar nubes LiDAR

Descripción Se podrá obtener una previsualización de la posible nube que
se obtendrá de cada fragmento. Debe permitir un mínimo de

configuración tal y como lo sería el número de rayos, ángulo de
apertura o alcance. La simulación será aproximada

Prioridad Baja

Tabla 4.6: RF-05

4.1.1.2 Extracción de requisitos no funcionales

Estos requisitos establecen los estándares de calidad del software, abarcando

aspectos como pueden ser el rendimiento o la consistencia, entre otros. En esta

aplicación, los requisitos no funcionales serán:

RNF-01: Rendimiento

Título Rendimiento

Descripción La fragmentación y el etiquetado ofrecidos por la aplicación

deben ser rápidos

Prioridad Media

Tabla 4.7: RNF-01

RNF-02: Interfaz intuitiva y retroalimentada

Título Interfaz intuitiva y retroalimentada

Descripción La aplicación tendrá una apariencia atractiva y será fácil de
utilizar y configurar. Durante su uso debe haber un mínimo de
retroalimentación para comprobar el proceso que se está

llevando a cabo

Prioridad Baja

Tabla 4.8: RNF-02

RNF-03: Consistencia

Título Consistencia

Descripción La aplicación debe estar depurada para evitar errores, pues

esto puede ser una fuente de problemas para fases posteriores
del proyecto, así como para investigaciones posteriores

Prioridad Alta

Tabla 4.9: RNF-03

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 67

RNF-04: Portabilidad

Título Portabilidad

Descripción Se debe poder ejecutar la aplicación en cualquier ordenador
que cumpla los requisitos mínimos y tenga una versión

compatible de Unity

Prioridad Baja

Tabla 4.10: RNF-04

4.1.2 Análisis y diseño del sistema

4.1.2.1 Diagrama de casos de uso

Para la definición del diagrama de casos de uso de esta aplicación se tendrán

en cuenta 2 actores, dados por la Tabla 4.11 y la Tabla 4.12:

A-01: Usuario

Tipo Actor principal

Descripción Persona que usa la aplicación para el procesamiento de las

ciudades

Interacción Directamente sobre la interfaz de la aplicación mediante un
botón para lanzar el proceso de fragmentación y etiquetado

Tabla 4.11: Actor usuario

A-02: Sistema

Título Sistema

Descripción Sistema que de forma automatizada tras la orden ejecuta
sucesivamente todas las acciones requeridas para el
procesamiento de las ciudades

Interacción Directamente sobre la aplicación, los modelos y los archivos
XML

Tabla 4.12: Actor sistema

En la Ilustración 4.1 se representa el diagrama de casos de uso, donde se

muestran las interacciones entre los actores y la aplicación. Con esto se trata de

describir qué hace el sistema sin entrar en detalles técnicos de implementación.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 68

Ilustración 4.1: Diagrama de casos de uso

4.1.2.2 Casos de uso

Para desarrollar los casos de uso creados, se empleará la plantilla especificada

en la Tabla 4.13:

Identificador: Título

Título Nombre descriptivo

Actor primario Entidad que realiza el caso

Sistema Entorno donde se realiza la acción

Nivel Objetivo de jugador u objetivo de sistema

Precondición Condiciones que deben haberse dado con anterioridad

Flujo normal Secuencia de pasos común de ejecución del caso

Flujos alternativos Secuencia de pasos alternativa de ejecución del caso

Tabla 4.13: Plantilla de casos de uso

Considerando el diagrama de casos de uso definido y los requisitos iniciales,

se han desarrollado los siguientes casos de uso:

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 69

CU-01: Procesar una ciudad

Título Procesar una ciudad

Actor primario Usuario

Sistema Aplicación para fragmentar y etiquetar ciudades

Nivel Objetivo de usuario

Precondición La ciudad debe estar cargada en Unity y debe haberse
marcado el modelo como modificable desde el inspector
(Read/Write)

Flujo normal

1 El usuario inicia la aplicación con el motor de Unity

2 El usuario configura los parámetros de fragmentación

3 El usuario configura los parámetros de etiquetado

4 El usuario pulsa el botón central para iniciar el proceso

5 El sistema lleva a cabo una retroalimentación para indicar que
se pulsó el botón

6 El sistema comienza el proceso de fragmentado y etiquetado

con los parámetros insertados

Tabla 4.14: CU-01

CU-02: Fragmentar modelos de ciudades

Título Fragmentar modelos de ciudades

Actor primario Sistema

Sistema Aplicación para fragmentar y etiquetar ciudades

Nivel Objetivo de sistema

Precondición El usuario debe haber pulsado el botón de procesamiento de
la ciudad

Flujo normal

1 El sistema llama al algoritmo de fragmentado

2 El sistema genera nuevos objetos, sin etiquetar, que suponen
un subconjunto de las mallas de la ciudad original

3 El sistema muestra una retroalimentación

Tabla 4.15: CU-02

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 70

CU-03: Etiquetar mallas

Título Etiquetar mallas

Actor primario Sistema

Sistema Aplicación para fragmentar y etiquetar ciudades

Nivel Objetivo de sistema

Precondición El usuario debe haber pulsado el botón de procesamiento de
la ciudad

Flujo normal

1 El sistema llama al algoritmo de fragmentado

2 El sistema etiqueta cada malla según la textura que tiene
asociada usando la tabla de conversión

3 El sistema asocia un material según la textura que tiene

relacionada usando la tabla de conversión

Tabla 4.16: CU-03

CU-04: Generar archivos para LiDAR virtual

Título Generar archivos para LiDAR virtual

Actor primario Sistema

Sistema Aplicación para fragmentar y etiquetar ciudades

Nivel Objetivo de sistema

Precondición El sistema debe haber fragmentado la ciudad y haber
etiquetado cada una de las mallas usando el conjunto de
etiquetas seleccionado por el usuario

Flujo normal

1 El sistema toma los resultados del algoritmo de fragmentación

y etiquetado

2 El sistema genera archivos en formato FBX para cada uno de

los fragmentos de ciudad obtenidos del algoritmo de
fragmentado

3 El sistema genera archivos en formato XML según la salida del
algoritmo de etiquetado para cada uno de los fragmentos
obtenidos

4 El sistema vuelca los archivos FBX y XML dentro de la carpeta
de salida

Tabla 4.17: CU-04

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 71

CU-05: Previsualizar nubes LiDAR

Título Previsualizar nubes LiDAR

Actor primario Sistema

Sistema Aplicación para fragmentar y etiquetar ciudades

Nivel Objetivo de sistema

Precondición El sistema debe haber fragmentado la ciudad y haber
etiquetado cada una de las mallas usando el conjunto de
etiquetas seleccionado por el usuario

Flujo normal

1 El sistema inicia el proceso de simulación LiDAR aproximada

2 El sistema lanza rayos para detectar los puntos de colisión

3 El sistema registra la posición y el color del punto de colisión

4 El sistema muestra una retroalimentación durante varios
segundos

5 El sistema guarda en un archivo opcional en formato CSV la
nube de puntos obtenida

Tabla 4.18: CU-05

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 72

4.1.2.3 Diseño arquitectónico

La Ilustración 4.2 muestra el diagrama UML seguido durante el desarrollo de la

aplicación. Si bien es cierto que pueda haber variaciones respecto al producto final

debido a la incertidumbre en ciertos aspectos, este diagrama presenta la estructura

del proyecto de forma fiel.

Ilustración 4.2: UML de la aplicación

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 73

4.2 Desarrollo del fragmentador de ciudades

A lo largo de esta sección se presentarán y describirán en detalle las distintas

iteraciones que se han realizado para el desarrollo de la aplicación en Unity 3D usada

para el fragmentado de ciudades. El desarrollo cuenta con 4 partes:

• Sistema de fragmentación: trata de, dada una ciudad de gran tamaño,

seccionar o particionar la misma en fragmentos disjuntos definidos por un

radio.

• Etiquetado: se ocupa de indicar para cada malla que compone de la ciudad

cuál es su clasificación dado un conjunto de etiquetas. Esto se refleja en la

generación de un archivo que asocia mallas y etiquetas. Análogamente al

etiquetado se creará un segundo archivo para asociar a las mallas un

material.

• Previsualizador: será una funcionalidad que será de utilidad para conocer

como podrá ser, aproximadamente, el resultado del escaneo con un sensor

LiDAR del fragmento enviado.

• Interfaz: donde se ajusta la aplicación, se creará un objeto de configuración

y se facilitará dentro de lo posible su usabilidad de cara al usuario.

4.2.1 Primera iteración: sistema de fragmentación

Esta primera iteración va directamente relacionada con la tarea 3.1,

anteriormente presentada y ha tenido una duración de 2 semanas tal y como se

estimó. En concreto, ese tiempo se repartió para trabajar la primera semana en la

primera subtarea, es decir, el desarrollo del sistema de instanciación pseudoaleatoria,

mientras que la segunda semana se destinó a la creación del objeto fragmentador, lo

que corresponde con la segunda subtarea. El resultado de esta tarea ha sido

satisfactorio y ha devuelto, tal y como se demandaba, un prototipo funcional con

capacidad de fragmentación de ciudades. A continuación, se entrará en detalle y se

explicarán ambos desarrollos.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 74

4.2.1.1 Instanciación de fragmentadores

La implementación de este sistema está basada en la ubicación

pseudoaleatoria de GameObjects, a los que llamamos fragmentadores. Dichas

ubicaciones se obtienen del lanzamiento de posiciones aleatorias sobre cada uno de

los triángulos que conforman las mallas de la carretera de la ciudad (porque sobre

ellas se colocará el sensor LiDAR), para posteriormente seleccionar un conjunto

aleatorio de dichas posiciones. Aunque de primeras la idea es muy simple, si se quiere

hacer correctamente, debe tenerse en cuenta la cantidad de puntos que se colocarán

sobre cada triángulo de los que conforman las mallas de carretera.

Ilustración 4.3: Reparto democrático de puntos en función del área

Si nos fijamos en el esquema superior, Ilustración 4.3, en el lado izquierdo

tenemos el resultado de asignar un número de puntos fijo a cada triángulo, algo que

muestra como en zonas con poca área y muchos triángulos hay más puntos

generados que en áreas grandes con pocos triángulos. Si por el contrario lo que se

deseamos es asignar puntos de forma democrática dentro del espacio de las

carreteras, se debe pasar del reparto anterior al que se ve en la derecha del diagrama,

donde existiendo el mismo número de puntos, éstos están ubicados de manera más

homogénea.

Esto se consigue anotando cada uno de los triángulos que pertenecían a mallas

de carretera junto con sus respectivas áreas para asignarles una cantidad de puntos

acorde al espacio que ocupan. Dicha cantidad se obtiene mediante el siguiente cálculo

para cada triángulo:

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 75

𝑝𝑢𝑛𝑡𝑜𝑠𝑡𝑟𝑖á𝑛𝑔𝑢𝑙𝑜 = 𝐼𝑛𝑡 (
á𝑟𝑒𝑎𝑡𝑟𝑖á𝑛𝑔𝑢𝑙𝑜 ∗ 𝑝𝑢𝑛𝑡𝑜𝑠𝑡𝑜𝑡𝑎𝑙

á𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙
) (4.1)

Podemos obtener con áreatriángulo (área del triángulo en cuestión) y áreatotal

(sumatoria de todas las áreas de mallas de carreteras) el peso normalizado de cada

uno de los triángulos en función del espacio que ocupan. Posteriormente

multiplicamos dicho peso por puntostotal (puntos a repartir en el espacio) y se trunca a

su valor entero, obteniendo el número de puntos a colocar aleatoriamente dentro del

triángulo estudiado.

Una vez se obtiene un listado de puntos, seleccionados de forma aleatorizada

y correctamente repartidos en el espacio de las carreteras, lo que se hace es

seleccionar unos pocos (cantidad que expresa el usuario) para que pasen a ser las

posiciones de los objetos fragmentadores. Para ello se estudian valores como las

distancias entre los puntos y la cantidad de vacío que habría si el fragmentador

generase un fragmento en la posición indicada, algo que se hace con un algoritmo

basado en el estudio de las envolventes de las mallas de la ciudad que permite

conocer de forma aproximada la cantidad de vacío que tendrá el fragmento. Con ello

se asegurará que cada fragmento a generar sea diferente, completamente o en parte

disjunto con el resto, y que no tenga zonas vacías. En la siguiente imagen, Ilustración

4.4, vemos como el sistema ubica los objetos fragmentadores, representados en rojo

con transparencia.

Ilustración 4.4: Instanciación pseudoaleatoria de fragmentadores

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 76

4.2.1.2 Objeto fragmentador

Durante este apartado se ha estado nombrando al objeto fragmentador, y lo

cierto es que es la clave para la generación de fragmentos de ciudades. La forma de

configuración de este objeto ha ido cambiando a lo largo del proyecto, mejorándose y

facilitándose para el usuario, por lo que se detallará en el apartado de configuración

para ver los parámetros finales a destacar. El funcionamiento del fragmentador se

basa en la detección recursiva de todas las cajas envolventes existentes para

comprobar si estas pertenecen completamente o parcialmente a la esfera de alcance

definida por el radio especificado.

Una pregunta común acerca de este mecanismo sería que por qué no se

utilizan los colisionadores de Unity. La respuesta viene de la mano del objetivo de la

búsqueda de la eficiencia. Dar a todos los objetos el componente de colisión

provocaría que la aplicación redujese su velocidad. Evitando tomar colisionadores, lo

que se ha utilizado es la envolvente que por defecto tienen todos los objetos en Unity.

Comprobando su envolvente se obtienen 8 puntos que definen el hexaedro, y con

ellos podemos asegurar que un objeto está dentro del alcance si se cumple al menos

una de estas condiciones, evaluadas en este orden:

1. Su caja envolvente tiene algún vértice a menor o igual distancia que la

definida por el rango de detección

2. Su caja envolvente tiene un punto perteneciente a alguna arista que se

encuentra en colisión con la esfera que se define por el rango de detección.

En cuanto a estos condicionales podemos decir que el primero es trivial, sin

embargo, el segundo es algo más complejo. Por suerte, Unity permite hacer raycasting

a bajo coste, por lo que aprovechando que la esfera de visualización roja sí que tiene

colisionador, se lanzarán rayos en búsqueda de colisiones. Estos rayos viajarán entre

los puntos que definen las aristas de las envolventes, devolviendo un punto en caso

de colisionar con la esfera o nulo en caso contrario. De esta forma sabemos gracias a

la envolvente si los objetos pertenecen o no al fragmento definido por un radio, dando

resultados como el siguiente.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 77

Ilustración 4.5: Fragmento de ciudad

4.2.1.3 Pruebas

A continuación, se van a mostrar los resultados de los test realizados para el

sistema de fragmentación.

T-01 Test de instanciación de fragmentadores

Objetivo Las ubicaciones que devuelve el sistema para la generación
de fragmentos son correctas, dando a cada área el peso
correspondiente para la posterior instanciación

Resultado El sistema respeta la ubicación de los fragmentos siguiendo la
configuración y condiciones de los parámetros sin problema

Observaciones Si la ciudad completa es pequeña, o el número de puntos
demandados muy grande, el sistema no suele conseguir
generar la cantidad de fragmentos que se le solicitan

Tabla 4.19: T-01

T-02 Test de fragmentación

Objetivo Los fragmentadores son capaces de detectar las envolventes
de los objetos de la ciudad, diferenciando aquellas que están

dentro y fuera del rango de detección

Resultado El fragmentador consigue con éxito delimitar cuáles son los

objetos pertenecientes al fragmento según la configuración

Observaciones Si el interior del fragmento tiene “lagunas vacías”, es decir,

huecos que no están pegados al límite del fragmento, cabe la
posibilidad de que, por el funcionamiento interno que tiene no
se detecten

Tabla 4.20: T-02

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 78

4.2.2 Segunda iteración: generación de archivos y etiquetado

Esta segunda iteración está directamente vinculada con la tarea 3.2,

previamente mencionada, y ha tenido una duración de dos semanas, como estaba

previsto. En detalle, podemos decir que el tiempo se distribuyó de la siguiente manera:

durante la primera semana se trabajó en la primera subtarea, que consistía en el

desarrollo de un sistema para la gestión y la conversión entre diferentes conjuntos de

etiquetas, mientras que la segunda semana se dedicó a la codificación de la función

para generar archivos XML legibles para el sensor LiDAR virtual. El resultado de esta

tarea ha sido satisfactorio y ha devuelto un prototipo funcional con capacidad de

fragmentación y etiquetado de ciudades. A continuación, se explicarán ambos

desarrollos en detalle.

4.2.2.1 Gestión y conversión del etiquetado

El LiDAR virtual requiere que los objetos estén clasificados. Para esto se diseñó

y se crearon varias tablas de conversión para etiquetar los objetos y traducir dicho

etiquetado entre diferentes datasets. De esta manera, se podrá configurar el sistema

para que etiquete diferentemente los objetos de las ciudades según si el conjunto de

etiquetas es el utilizado en los conjuntos LAS [47], Toronto-3D, Semantic3D y

Semantic KITTI (conjuntos de etiquetas disponibles desde sus páginas oficiales),

incluyendo además un nuevo conjunto de etiquetas propias (el más específico de

todos). Concretamente se necesitaron 3 tablas:

• TABLA_CLAVES: tabla que asocia el nombre de las texturas de los objetos

con el conjunto de etiquetas propio. La clave es el nombre de la textura y el

valor es la etiqueta correspondiente (dataset propio). En la Ilustración 4.6 se

puede ver un fragmento de la tabla.

• TABLA_CONVERSION_MATERIALES: tabla que asocia el nombre de las

texturas de los objetos con el nombre del material. La clave es el nombre de

la textura y el valor el material. En la Ilustración 4.7 se puede ver un fragmento

de la tabla.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 79

Ilustración 4.6: Tabla de claves

Ilustración 4.7: Tabla de materiales

• TABLA_CONVERSION_ETIQUETAS: tabla que traduce del conjunto de

etiquetas propias a otro conjunto de etiquetas. La clave es la etiqueta propia

correspondiente, y el valor es, en función del dataset seleccionado, la

traducción de la etiqueta del dataset propio al dataset elegido. Como nota

adicional, es importante mencionar que cada etiqueta también tiene un

conjunto numérico asociado. Esta tabla luce similar a como se ve en la

Ilustración 4.8.

Ilustración 4.8: Tabla de conversión de etiquetas

Estas tablas se interconectan entre ellas para que, dada una textura de entrada,

se relacione con la etiqueta y material correspondiente. Por ejemplo, y siguiendo el

esquema de la Ilustración 4.9, si uno de los objetos de la ciudad es un tronco de árbol,

en primer lugar, se comprobaría la textura que le da color desde las propiedades. Una

vez conocida la textura (text_trunk_002), esta se toma como clave de las tablas de

etiquetas y materiales, comprobando respectivamente cuál es su etiqueta por defecto

y su material. Si se deseara utilizar como referencia el etiquetado de Toronto-3D, la

etiqueta debería traducirse a una etiqueta de dicho dataset. De esta manera, habiendo

tomado como entrada un trozo que correspondía a una parte de un árbol de la ciudad,

se ha conseguido una salida con la etiqueta de Toronto-3D (Natural) y el material

(Wood).

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 80

Ilustración 4.9: Proceso de etiquetado de mallas

Es importante comentar que el sistema se hizo de manera que posteriormente

fuese fácil ampliar estas tablas siguiendo la documentación que acompaña a las

mismas, junto con la información encontrada en este documento.

4.2.2.2 Generación de archivos XML para LiDAR virtual

La gestión de etiquetado presentada se consigue gracias a la ejecución del

código del fragmentador. Tras ese proceso se prosigue con el etiquetado interno en

Unity, y luego se lleva a cabo la creación de un conjunto de archivos necesarios para

el LiDAR virtual que refleje dicha información. Estos archivos seguirán el formato XML,

lenguaje de marcado que permite presentar la información de una manera

estandarizada, relacionando texturas con materiales y etiquetas. El formato seguido

es el siguiente para el archivo de etiquetado LAS en XML, siendo similar para los

demás archivos.

 1. <scene>
 2. <!-- ASPRS classes are listed below : -->
 3. <!-- GROUND, NOISE, BUILDING, ROAD_SURFACE, CREATED, -->
 4. <!-- HIGH_VEGETATION, LOW_VEGETATION, UNCLASSIFIED -->
 5. <!-- ASPRS class Naming of objects affected by ASPRS classes -->
 6.
 7. <label key="GROUND">
 8. <name>
 9. curb
10. </name>
11. </label>
12. <label key="ROAD_SURFACE">
13. <name>
14. Asphalt_
15. </name>
16. <name>

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 81

17. Road_white_Color
18. </name>
19. </label>
20.
21. ...
22.
23. <label key="UNCLASSIFIED">
24. </label>
25.
26. </scene>

Nótese que se está asociando patrones de texto en lugar del nombre completo

de las texturas. Por ejemplo, las texturas “Asphalt_001”, “Asphalt_002” y

“Asphalt_003” vienen representadas por “Asphalt_”. Esto es útil para reducir espacio

y aumentar la velocidad de procesamiento del archivo. Por supuesto esta solución

está adaptada al LiDAR que se utilizará dentro de esta investigación, y en caso de

utilizar otro sensor habría que prepararlo para ser capaz de procesar este formato.

4.2.2.3 Pruebas

A continuación, se muestran test realizados para el sistema de etiquetado.

T-03 Test de gestión de la traducción

Objetivo Todo objeto se etiqueta correctamente y se permite traducir la
etiqueta a cualquier otro conjunto

Resultado El sistema etiqueta y es capaz de traducir las etiquetas entre

diferentes conjuntos con éxito

Observaciones Las traducciones solo pueden hacerse de un conjunto

específico hacia otro conjunto más general. Si el conjunto de
origen es menos específico que el de destino, una etiqueta
podría traducirse de varias maneras, produciendo errores

Tabla 4.21: T-03

T-04 Test de gestión de materiales

Objetivo Se asocia a todo objeto un material haciendo uso de la tabla
de materiales

Resultado Todos los objetos son asociados correctamente a un material

Observaciones

Tabla 4.22: T-04

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 82

4.2.3 Tercera iteración: previsualizador de nubes LiDAR e interfaz

Se trata de la última iteración, relacionada con la tarea 3.3, cuya duración fue

de 1 semana, algo que equivale a la estimación inicial. En ese tiempo se desarrolló

principalmente funcionalidades de ayuda para el usuario, mejorando la interfaz y su

configuración, pero sobre todo introduciendo la opción de previsualización LiDAR. El

resultado de esta tarea ha sido satisfactorio y ha devuelto, tal y como se demandaba,

la aplicación completamente funcional. A continuación, se entrará en detalle y se

explicarán ambos desarrollos.

4.2.3.1 Obtención de nubes de previsualización

La obtención de nubes de previsualización fue una funcionalidad que se

introdujo con el objeto PrevisualizadorLiDAR como una herramienta adicional para

saber aproximadamente cómo se vería la nube que devolvería el LiDAR virtual. De

esta forma, podrían detectarse posibles errores antes de utilizar el sensor. Sabiendo

esto, y como es de esperar, este mecanismo no simula un sensor LiDAR como tal, por

lo que no ha de esperarse dicho comportamiento. Si se desea simular un LiDAR

deberá utilizarse un simulador correctamente diseñado.

Para la generación de estas nubes de puntos, el objeto fragmentador permite

activar una opción para reproducir la emisión de rayos de un LiDAR. Si esta

funcionalidad está activada se llama a una función que lanza Y rayos por cada una de

las X capas, de forma que:

• X indica cuántas divisiones se realizan en el plano horizontal para abarcar los

360º de visión. Por ejemplo, si tenemos el valor 40 para X, significa que se

lanzarán ráfagas de rayos en vertical separadas cada 9º.

• Y indica cuantos rayos se envían en cada ráfaga vertical. Por ejemplo, si

tenemos una Y de valor 20, quiere decir que por cada ráfaga se envían 20

rayos.

Así si lanzasemos una ejecución con X = 40 e Y = 20, la simulación estaría

constituida por 800 rayos dando una nube etiquetada de hasta ese número de puntos

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 83

en función de la cantidad de colisiones. El objeto previsualizador también permite un

mínimo de configuración, tal como lo es el ángulo de apertura o el rango de detección.

Ilustración 4.10: Funcionamiento del previsualizador LiDAR

En la Ilustración 4.10 se ve cómo funciona el sistema con la configuración

comentada y teniendo un ángulo de apertura de 50 grados y 120 de rango de

detección. Obsérvese que los rayos se muestran coloreados para mayor facilidad de

depuración, siendo visibles desde la escena durante unos segundos: en verde si

colisionan, y en rojo en caso contrario. Como era de esperar, cuanto mayor es el

número de rayos, mayor es la densidad de la nube de puntos, aunque no se ha

elevado demasiado para no complicar la explicación. El formato en el que se devuelve

la nube de puntos es CSV, de forma que cada línea del archivo es un punto.

4.2.3.2 Interfaz de la aplicación

La interfaz de usuario ha sido un punto en el que se ha ahorrado algo de tiempo.

Tiene la interfaz necesaria para hacer todo lo requerido, así como un objeto para

encapsular toda la configuración, pero visualmente no tiene gran impacto. Esto es así

porque el objetivo principal de este proyecto no es hacer esta aplicación, sino que esta

es solo un eslabón necesario para la investigación posterior con redes neuronales.

Esta interfaz consta de un solo botón, incluido dentro del canvas de la escena

para iniciar el proceso de fragmentación. Dicho botón inicia el proceso aplicando la

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 84

configuración del objeto configurador, un objeto modificable desde el inspector que ha

sido creado para encapsular toda la información necesaria. En la Ilustración 4.11

puede verse la interfaz desarrollada.

Ilustración 4.11: Interfaz de la aplicación

 En cuanto a la configuración permitida, el objeto responsable incorpora una

serie de parámetros modificables desde el inspector:

• Ciudad: se le debe pasar un GameObject que contenga el objeto a

fragmentar.

• Dataset Elegido: es un desplegable que permite seleccionar el conjunto de

etiquetas que se utilizará para nombrar a cada elemento.

• Total Puntos: es el número de instancias de fragmentadores que se pueden

generar como máximo. Cabe destacar que por temas de eficiencia, el

algoritmo no asegura que se cree en todos los casos el número demandado

de fragmentadores.

• Capa: será el tipo de etiqueta que debe tener asociada cualquier malla que

esté en evaluación para ubicar sobre ella objetos fragmentadores. Por

defecto es “Carretera”, pero puede tomarse otra etiqueta siempre que se

nombre igual que en el conjunto de etiquetas propias.

• Radio Fragmento: define una esfera que será utilizada para posteriormente

generar el fragmento, marcando así sus límites.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 85

• Incremento Altura: permite dar un pequeño desfase sobre el eje Y en la

ubicación de los fragmentadores, siendo este un valor entre el máximo y el

mínimo solicitado.

• Distancia Separación: es la distancia mínima que debe haber entre el centro

de cada fragmento generado.

• Uniformidad Fragmentos: indica la cantidad de espacio vacío que puede

haber dentro de cada fragmento. Si el valor es cercano a 1 se tratará de evitar

que el centro de los fragmentos se genere demasiado cerca de los bordes de

la ciudad, evitando crearlos con vacio proveniente de esa causa. Si por el

contrario el valor es cercano a 0, se permitirá instanciar los generadores en

cualquier punto de la ciudad, independientemente de su cercanía con el

borde.

• Generar Previsualización: es un booleano que si se verifica se activa la

funcionalidad de previsualización y genera posibles nubes de puntos. Por

defecto se encuentra desactivada la opción porque ralentiza el proceso.

• Ángulo Apertura: es el ángulo del abanico de emisión de rayos en vertical,

partiendo desde el centro del fragmentador.

• Distancia Máxima: es el rango máximo de detección de colisiones para los

rayos emitidos.

• Número Láseres X: cantidad de ráfagas emitidas en el plano horizontal para

abarcar los 360º de visión.

• Número Láseres Y: cantidad de láseres lanzados en vertical por ráfaga para

cubrir el espacio del abanico generado por el ángulo de apertura.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 86

4.2.3.3 Pruebas

A continuación, se van a mostrar los resultados de los test realizados para el

sistema de previsualización y la interfaz de usuario.

T-05 Test de correspondencia entre previsualización y fragmento

Objetivo Las nubes generadas muestran de forma fiel el fragmento en

forma de nubes de puntos, respetando colores, posiciones de
puntos y etiquetado

Resultado La previsualización etiqueta correctamente, respeta colores y
las posiciones se corresponden con las colisiones de los rayos
simulados

Observaciones

Tabla 4.23: T-05

T-06 Test de archivos del previsualizador

Objetivo Los archivos son legibles y tienen un formato que permite su
visualización fácilmente con algún software

Resultado Los archivos generados pueden leerse desde programas como
MeshLab y muestran la información correctamente

Observaciones Debe ajustarse desde el programa de visualización el rango

RGB para que los colores se muestren correctamente

Tabla 4.24: T-06

T-07 Test de funcionamiento de la interfaz

Objetivo La interfaz funciona correctamente y permite configurar todo el
sistema de manera manejable

Resultado El botón principal funciona perfectamente y su configuración

desde el inspector de Unity es muy intuitiva

Observaciones Se puede pulsar el botón más de una vez sin que haya fallos de

ningún tipo

En función del tamaño de la ciudad a fragmentar, en ocasiones
la interfaz tarda en mostrar retroalimentación debido a los

cálculos que se hacen entre los frames anteriores y posteriores
a la retroalimentación

Tabla 4.25: T-07

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 87

5 EXPERIMENTACIÓN CON REDES NEURONALES

En esta segunda etapa del proyecto, lejos de lo que hemos visto hasta el

momento con el desarrollo de una aplicación (sección 4 Generador de fragmentos de

ciudades) nos centraremos en un proceso completamente experimental. Para ello, se

ha seguido la conocida metodología Knowledge Discovery in Databases (KDD), la cual

consta de las siguientes fases, que se detallarán en los próximos subapartados:

• Recopilación de datos

• Preprocesamiento y transformación de datos

• Minería de datos

• Evaluación e interpretación

5.1 Recopilación de datos

La recopilación de datos se divide en la recopilación de datos reales y en la

elaboración de datos sintéticos.

5.1.1 Conjunto de datos reales

Los conjuntos de nubes de puntos de entornos urbanos reales fue la tarea de

recolección de datos más fácil y rápida, pues en Internet existen múltiples opciones,

tal y como ya se ha visto a lo largo del apartado 2 (Antecedentes y estado del arte).

Aunque en un inicio se planteaba utilizar los conjuntos de Semantic3D, Semantic

KITTI y Toronto-3D, lo cierto es que las limitaciones temporales no permitieron

hacerlo. Es por ello que, en búsqueda de hacer un estudio de máxima calidad dado el

contexto, se decidió reducir el número de conjuntos reales para utilizar únicamente el

conjunto de datos Toronto-3D, algo que se obtiene desde la página oficial.

5.1.2 Conjunto de datos sintéticos

La recopilación de datos sintéticos fue algo más trabajoso debido a que en gran

parte es el interés del proyecto. Para obtener dicho conjunto se hicieron 3 tareas: la

generación de ciudades, el fragmentado con etiquetado de ciudades y la obtención de

nubes de puntos a partir de un LiDAR virtual.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 88

5.1.2.1 Generación de ciudades mediante reglas

Para la creación de ciudades se ha utilizado el software de CityEngine,

presentado en el apartado 3.4.1.2 (ArcGIS CityEngine). Usar esta aplicación es algo

complicado y que, pese a ser una herramienta muy potente, tiene una curva de

aprendizaje notable. A continuación, se va a mostrar los pasos a seguir para generar

una ciudad básica, aunque como es de esperar, estas se pueden personalizar mucho

incluyendo más reglas.

El primer paso será dirigirnos a File→New y crear una ciudad mediante la

opción “City Wizard” (Ilustración 5.1). Desde ahí se solicitará información básica como

el nombre de la ciudad, las dimensiones de la misma, altura máxima y varias

direcciones donde están los mapas de altura, textura y obstáculos (Ilustración 5.2).

Ilustración 5.1: Crear proyecto CityEngine

Ilustración 5.2: Configurar proyecto

 Tras estas configuraciones, CityEngine pide que se seleccione un tipo de puerto

carretero (Ilustración 5.3). Existen múltiples posibilidades, pero para este ejemplo se

elegirá el modelo de carreteras de París, un modelo radial. Posteriormente se nos

pregunta sobre el tipo de ciudad que buscamos. Esto aplicará una serie de reglas por

defecto que más tarde se podrán sustituir o modificar. En este caso se dejará el

conjunto “International City” (Ilustración 5.4). Hecho esto, se le da al botón para

finalizar y tras varios segundos deberá mostrarse la ciudad generada.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 89

Ilustración 5.3: Puerto carretero

Ilustración 5.4: Reglas iniciales de
generación

Una vez cargada la ciudad, debe verse una interfaz similar a la de la Ilustración

5.5, que como se observa, recuerda a la usada en otros programas como Unity o

Blender. En ella tenemos una zona para ver los elementos de la escena (arriba a la

izquierda), otra zona para poder ver los archivos y la jerarquía de carpetas (abajo a la

izquierda), un espacio central que muestra la escena con la ciudad, y una última zona

reservada para el inspector (lado derecho), que es utilizada para configurar las reglas

utilizadas.

Ilustración 5.5: Interfaz de CityEngine

Sin embargo, como podemos apreciar aún no hay nada más que un puerto

carretero. Esto es porque se tiene que construir la ciudad. Para ello deberán incluirse

en el proyecto las reglas que se desean utilizar y posteriormente darle al botón

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 90

marcado en la Ilustración 5.5. Una vez hecho esto, la ciudad cambia su apariencia y

obtiene un posible resultado final, proceso visible y comparable entre la Ilustración 5.6

y la Ilustración 5.7, donde se ha pasado automáticamente del puerto carretero

esquematizado a la ciudad detallada.

Ilustración 5.6: Ciudad sin construir

Ilustración 5.7: Ciudad construida

El conjunto de reglas que se definen es muy interesante porque cambiando

estas se pueden obtener resultados muy diversos como los que se muestran a

continuación en la Ilustración 5.8. Algunas de esas ciudades se crearon con conjuntos

de reglas propuestos por archivos de ejemplo (aunque por desgracia no se han podido

usar todos por problemas con Unity), mientras que otros han sido tomados de Internet

y adaptados.

Ilustración 5.8: Ciudades generadas con CityEngine

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 91

5.1.2.2 Fragmentado y etiquetado de ciudades

Para la construcción de los fragmentos de ciudades etiquetados ha de

exportarse el modelo de la ciudad e incluirlo dentro de la escena de Unity, activando

desde el inspector para todas las mallas que lo compongan la opción de lectura y

escritura (tic Read/Write activo). Cabe recordar en este apartado que Unity tiene

problemas para la identificación de mallas cuando hay demasiados objetos dentro del

proyecto, por lo que, si la ciudad no se está usando en el momento, lo correcto es

enviarla a la carpeta “Fragmentador de ciudades\Assets\CiudadesCompletas\Otras

ciudades~” (invisible desde Unity), y en caso de estar usándose, pasarla a la carpeta

anterior “Fragmentador de ciudades\Assets\CiudadesCompletas”. Hecho esto, deberá

revisarse si todas las texturas están registradas dentro de las tablas de etiquetas y de

materiales, algo que se hace automáticamente y es avisado por consola. En caso de

no estar alguna textura o patrón registrado, deberá añadirse en ambas tablas, pues

de no ser así fallará. El objeto u objetos que compongan la ciudad deben incluirse de

manera que sean objetos hijos del objeto “Ciudad”, conectado con el objeto que

permite la configuración del sistema, el objeto “Configuracion”. Finalmente, y tras

configurar los parámetros deseados, habría que iniciar la aplicación en Unity para

pulsar el único botón de la interfaz e iniciar el proceso. Cabe mencionar que los

parámetros configurables se explicaron anteriormente, por lo que se recomienda

haber leído el capítulo 4 (Generador de fragmentos de ciudades). Consecuentemente,

tras varios segundos, encontraremos los fragmentos etiquetados dentro de la carpeta

“Fragmentador de ciudades\Assets\FragmentosGenerados~”.

Los fragmentos deberían lucir de manera similar a como se muestra en la

Ilustración 5.9, y en caso de tener activada la opción de previsualización de nube de

puntos, debería adjuntar además una nube similar a la de la Ilustración 5.10.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 92

Ilustración 5.9: Fragmento de ciudad

Ilustración 5.10: Previsualización de nube
LiDAR

5.1.2.3 Obtención de nubes de puntos con LiDAR virtual

Hasta este punto hemos conseguido crear una ciudad, fragmentarla y

etiquetarla. Ahora lo que se requiere es de la obtención de la nube de puntos con un

LiDAR virtual que refleje o simule fielmente el funcionamiento de un sensor real para

enviárselo a la red neuronal. Dicho proceso se puede resumir con el esquema de la

Ilustración 5.11, que se trata de un fragmento del esquema mostrado en el apartado

3.12 (Visión general del proyecto).

Ilustración 5.11: Ubicación actual dentro del flujo del proyecto

Para esta tarea se ha utilizado un sensor sintético previamente citado [48].

Dicho sensor tiene un funcionamiento donde en primer lugar, se adjuntan etiquetas

semánticas y materiales de una base de datos BRDF a objetos de escenas estáticas

y procedurales. Luego, y haciendo referencia a la Ilustración 5.12, un sistema LiDAR

virtual recrea la simulación con 1) especificaciones de escaneo, 2) desde una

plataforma y 3) siguiendo una ruta o colocado en una ubicación estática. Dicha

simulación se divide en dos etapas: generación del haz y solucionador de tiempo de

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 93

vuelo (ToF). En la última etapa, se adjuntan la intensidad y otros atributos relevantes

a los puntos 3D. Para más información se recomienda revisar el artículo “Enhancing

LiDAR point cloud generation with BRDF-based appearance modelling”.

Ilustración 5.12: Funcionamiento del LiDAR virtual [48]
(Enhancing LiDAR point cloud generation with BRDF-based appearance modelling)

De esta manera se le pasaron a este sensor los fragmentos procedurales junto

con XMLs que relacionaban las etiquetas con los objetos, y a partir de ello se

obtuvieron las nubes de puntos como salida del sensor. Estas nubes en bruto y en

formato PLY son el resultado de la tarea, estando listas para su tratamiento y posterior

inserción dentro la red neuronal. Cabe destacar que el simulador LiDAR es

configurable, por lo que se aprovechó para ajustarlo con la idea de que este tuviese

el mismo comportamiento que el LiDAR usado durante la toma de nubes de puntos

del conjunto de datos Toronto-3D.

5.2 Preprocesamiento y transformación de los datos

Se parte de la posesión de 2 conjuntos de datos, Toronto-3D y Synthetic Cloud

3D (reales y sintéticos respectivamente). El problema de estos datos es que no se

pueden utilizar directamente por múltiples factores. Primeramente, algunos archivos

son tan grandes como para que cualquier ordenador del laboratorio se quede sin

memoria VRAM (Video Random Access Memory) durante el entrenamiento. El

segundo de los inconvenientes es que los datasets se etiquetan con conjuntos de

etiquetas diferentes, algo que obligará a adaptar el etiquetado de Synthetic Cloud 3D

para que utilice el de Toronto-3D. En tercer lugar, ambos conjuntos de nubes nos dan

las nubes en formatos distintos que además no son soportados, por lo que hay que

traducirlos a un formato común que sí que soporte el proyecto, el formato NPY

(formato binario estándar de NumPy). Sumado a esto está la diferencia entre la

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 94

cantidad de información que nos ofrecen ambos datasets y la información que

realmente es necesaria. Posteriormente hay que tener en cuenta la posición de las

nubes, es decir, si se encuentran centradas, pues de no ser así puede haber

problemas con el proceso de aprendizaje y el truncado de posiciones muy alejadas.

También debe considerarse si los conjuntos tienen el mismo sistema de coordenadas,

algo que no sucede inicialmente porque en los datos de Toronto-3D se encuentran los

ejes Y/Z invertidos frente a los datos de Synthetic Cloud 3D. A esta serie de problemas

se les pueden sumar otros como por ejemplo la eliminación de puntos repetidos.

En vista de lo comentado, el preprocesamiento de los datos es algo necesario

y se ha creado un programa en Python para esta preparación de los datos. A

continuación, se describirán todas las acciones llevadas a cabo dentro del programa

acompañadas de su correspondiente comando en caso de haberlo. Dicho programa

se puede encontrar en la dirección:

“RepSurf\segmentation\convert2npy\convert_all_to_npy.py”.

5.2.1 Integración y adaptación a la arquitectura

Para comenzar la integración de los datos, estos deben acomodarse a la

arquitectura del proyecto RepSurf. Este proyecto usa formato NPY, pero nosotros

tenemos datos en formatos PLY. Para hacer la lectura de los archivos de etiquetas

se usa la librería pandas, mientras que para la lectura de archivos PLY se toma la

librería plyfile. Haciendo uso de ellas, el código para la lectura del PLY, simplificado a

lo esencial, es el siguiente para el LiDAR virtual (para el PLY de Toronto-3D habría

cambios mínimos manejados con un condicional).

 1. # Lee de forma personalizada el PLY pasado.
 2. def leer_PLY(PLY_path):
 3. # Lectura del PLY y detección de la naturaleza del archivo
 4. PLY_data = PLYData.read(PLY_path)
 5. vertices = PLY_data['LiDAR'].data
 6. # Lectura de la posición tomando x, y, z del PLY
 7. x = vertices['x']
 8. y = vertices['y']
 9. z = vertices['z']
10. # Lectura del color y de la clase
11. semanticG_vertices['semanticGroup_red']
12. semanticG_green = vertices['semanticGroup_green']
13. semanticG_blue = vertices['semanticGroup_blue']
14. # Lectura de la clase del punto del PLY
15. semanticGroup = vertices['semanticGroup']
16. return x, y, z, semanticG_red, semanticG_green, semanticG_blue, semanticG

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 95

Para la posterior conversión y guardado en formato NPY se ha utilizado la

librería numpy. Para mayor facilidad de depuración, se devuelve el archivo en formato

NPY y en TXT. En el código del programa las líneas responsables son las siguientes:

1. # Permite exportar un archivo a formato NPY dados los valores xyzrgbl
2. def exportar_NPY(out_path, x, y, z, r, g, b, labels):
3. data = np.column_stack((x, y, z, r, g, b, labels))
4. np.save(out_path + 'NPY', data)
5. np.saveTXT(out_path + 'TXT', data, fmt='%f %f %f %d %d %d %d', delimiter=' ')

Este proceso se hace automáticamente siempre, y dentro de él se traducen las

etiquetas propias de Synthetic Cloud 3D al conjunto de Toronto-3D gracias a las tablas

de conversión que se crearon para ese fin, explicadas en el capítulo 4 (Generador de

fragmentos de ciudades). Cabe destacar que solo se puede convertir una etiqueta

propia a etiqueta de un dataset concreto, pero no al revés. Esto es así porque para

cada etiqueta propia existe una única correspondencia en el conjunto de etiquetas

concreto (por ejemplo el de Toronto-3D), pero eso no sucede al contrario, en otras

palabras, con la traducción se lleva a cabo una generalización de las etiquetas propias

que son muy específicas. Esto se maneja con los siguientes argumentos:

• --labels_in: aquí se indica el conjunto de etiquetas de la nube de entrada

(debe coincidir el nombre con el de la columna numérica de la tabla de

conversión TABLA_CONVERSION_ETIQUETAS). Por ejemplo:

Num_Estandar_LAS.

• --labels_out: aquí se indica el conjunto (numérico) de etiquetas de la nube de

salida (debe coincidir el nombre con el de la columna numérica de la tabla de

conversión TABLA_CONVERSION_ETIQUETAS). Por ejemplo:

Num_Toronto_3D.

Aun habiendo arreglado esto, los datos tienen una forma de representación aún

incorrecta. Concretamente los datos se deben centrar, algo conseguido reubicando el

centroide de la ciudad, desarrollado y funcional mediante el argumento --center.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 96

 1. # Si se requiere de la nube centrada
 2. if center:
 3. # Calculamos el centroide para centrar la nube
 4. centroide_x = int(np.mean(x))
 5. centroide_y = int(np.mean(y))
 6. centroide_z = int(np.mean(z))
 7. # Restamos el centroide a cada punto y asignamos el nuevo valor de los puntos
 8. x -= centroide_x
 9. y -= centroide_y
10. z -= centroide_z

Igualmente, los datos deben pasar al mismo sistema de coordenadas, para lo

cual se requiere de invertir los ejes Y/Z del conjunto de Toronto-3D con el comando

--flip. Internamente, el código luce así:

1. # Invertimos ejes
2. if(flip_axis):
3. data[:, [1, 2]] = data[:, [2, 1]]

5.2.2 Limpieza de los datos

En esta fase se eliminaron los archivos que se consideraron potenciales

archivos problemáticos. Para ello, manualmente se repasó cada uno de los archivos

para comprobar si contenían algún tipo de error, quitando archivos defectuosos que

no incluían aceras o los vehículos no estaban correctamente etiquetados. Esta

revisión supuso pasar de 107 nubes de puntos a 71 nubes, lo cual supone la

eliminación de 36 archivos.

Debido al funcionamiento por barridos que tienen los sensores LiDAR, además

es posible que haya puntos repetidos dentro de una misma nube de puntos. Esto

solamente añade ruido al entrenamiento, por lo que se eliminaron los puntos repetidos

de ambos conjuntos de datos, es decir, tanto dentro de las nubes de Toronto-3D, como

los de Synthetic Cloud 3D. Ese proceso se hace automáticamente al ejecutar el

programa “convert_all_to_npy.py” y básicamente tiene en cuenta la posición para la

eliminación.

 1. # Destruye los puntos repetidos
 2. def borrar_repetidos(data):
 3. # Convertir a DataFrame
 4. df = pd.DataFrame(data, columns=['x', 'y', 'z', 'r', 'g', 'b', 'l'])
 5. # Eliminar duplicados basados en (x, y, z)
 6. df_unique = df.drop_duplicates(subset=['x', 'y', 'z'])
 7. # Convertir de nuevo a numpy array
 8. data_unique = df_unique.to_numpy()
 9. return data_unique

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 97

5.2.3 Reducción de la dimensionalidad

La información como el color, las normales o la intensidad finalmente se ha

descartado. Más concretamente, y como se comenta en varios puntos de la memoria,

la única característica que se ha tenido en cuenta a lo largo de este proyecto ha sido

la posición junto con la información de la clase. En un principio se iba a respetar la

organización del proyecto RepSurf, que permitía utilizar como características la

posición y el color, sin embargo, por limitaciones del sensor LiDAR virtual, por causas

de tiempo, para seguir alineados con otras investigaciones similares y por simplicidad,

al final se decidió descartar el color de entre las características a usar. Esto significa

que se tendrán en consideración los valores X, Y, Z y la clase.

No tener en cuenta el color supone tomar una de las 2 siguientes alternativas:

reorganizar el proyecto RepSurf para que no lo utilice, o anularlo para que no tenga

influencia en el entrenamiento. Lo más correcto sería sin duda reorganizar el proyecto

RepSurf, no obstante, ello implicaría demasiado tiempo, algo que por el contexto de

la investigación no se podría asumir. Es por esta razón que se tomó la segunda opción,

anular el valor RGB (0,0,0). En efecto, esta alternativa puede introducir un mínimo de

ruido, no obstante, se ha comprobado tras la experimentación que el impacto no es

elevado. Esta eliminación del color se ha sobrellevado en el programa escrito en

Python con el desarrollo de un argumento, --nullrgb, que hace dicha operación

simplemente añadiéndolo a la línea de ejecución en la terminal. En código

internamente se multiplica por 0 el color en caso de activarse la función.

Por otro lado, reducir el peso de los archivos individuales del dataset de

Toronto-3D ha sido algo necesario e indispensable porque su espacio en memoria no

es soportado. Abriendo el dataset se observa que hay algunos archivos que pesan

más de 1GB, algo que se expande dentro de la fase del entrenamiento y que produce

que la tarjeta gráfica del ordenador no sea capaz de entrenar debido a problemas de

memoria y falta de VRAM. Existen varias alternativas para solucionar esto, pero se

consideraron principalmente dos: tomar una muestra representativa de cada archivo,

o subdividir el archivo en múltiples archivos más pequeños. Para la investigación se

tomó la segunda opción pues, aunque ambas son viables, tomar una sola muestra

que soportase el ordenador haría que se perdiese mucha información de interés para

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 98

el entrenamiento, por lo que en búsqueda de utilizar la máxima cantidad de

información que el dataset de Toronto-3D nos brinda, se decidió dividir cada nube en

25 partes. De esta manera, aunque se pierdan conexiones entre puntos vecinos

porque estos se reparten entre diferentes nubes, se reduce el peso individual de cada

nube haciéndola más manejable. Esta subdivisión del dataset se hace con el

argumento --subdivide X, donde X es el número de divisiones requeridas. Dicho

argumento hace que la nube objetivo se subdivida aleatoriamente en X nubes

disjuntas entre ellas. El código para la subdivisión luce como este.

1. # Subdivide aleatoriamente el archivo original
2. def subdividir(data, num_partes, out_path):
3. np.random.shuffle(data)
4. split_data = np.array_split(data, num_partes)

Una vez reducido el problema asociado al coste en memoria nos encontramos

nuevamente frente al problema temporal que acompaña al proyecto desde que inició.

Entrenar con los 25 archivos de cada nube de Toronto-3D es algo que requiere

bastante tiempo y es por ello que buscando ahorrar algo de tiempo se tomaron 20 de

esos archivos, algo que, aunque no sea mucha diferencia, sí que permitía ajustarse al

tiempo estimado necesario.

5.2.4 División de los datasets

Llegados a este punto se tiene un conjunto de archivos preprocesados y no en

bruto tal y como se recibieron del sensor. Ahora lo que se hará es repartir los archivos

para llevar a cabo el entrenamiento, la validación dentro del mismo y las pruebas

posteriores. En otras palabras, se requerirá de definir 3 subconjuntos:

• Training set: es el subconjunto más grande, ya que el modelo necesita

muchos datos para aprender patrones. Éste se utiliza para ajustar los

parámetros del modelo, permitiendo al modelo configurar sus pesos internos

para minimizar el error.

• Validation set: se emplea para afinar el modelo y ajustar hiperparámetros,

permitiendo evaluar el rendimiento del modelo mientras se entrena. Sirve

para detectar si el modelo está aprendiendo correctamente.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 99

• Test set: se usa después de haber entrenado y ajustado completamente el

modelo. Con él se evalúa la capacidad de generalización del modelo final a

datos que no ha visto antes.

Conociendo esto y basándonos en configuraciones frecuentes, se hará un hold-

out, repartiendo las instancias como se ve en la Ilustración 5.13 de manera que,

aproximadamente, se destinen el 80% de ellas al proceso de entrenamiento y

validación, mientras que el 20% restante se utilicen para la etapa de pruebas. Además,

de ese 80% orientado al entrenamiento, un 20% se utilizará para la validación. En

otras palabras y de forma resumida, dado que se necesitarán para los entrenamientos

un conjunto real, un conjunto sintético y un conjunto mixto, el reparto será el siguiente:

• Conjunto de datos reales: de un total de 80 instancias que tiene Toronto-

3D, 40 se dedican a entrenamiento (provenientes de L001 y de L003), 20 a

validación (proveniente de L004) y las otras 20 para pruebas (proveniente de

L002). Cabe destacar que L001 y L003 contienen mayor cantidad de puntos

que L002 y L004. Pese a no ajustarse por completo a los porcentajes

propuestos, esta división es la recomendada por el artículo de Toronto-3D.

• Conjunto de datos sintéticos: de un total de 71 instancias que tiene

Synthetic Cloud 3D, 45 se dedican a entrenamiento, 11 a validación y las

otras 15 para pruebas.

• Conjunto de datos mixtos: de un total de 90 instancias que tiene el conjunto

mixto, 56 se dedican a entrenamiento y 14 a validación (ambos con 20% de

Toronto-3D y 80% de Synthetic Cloud 3D), y las otras 20 para pruebas (100%

de Toronto-3D).

Ilustración 5.13: Distribución de los datos

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 100

Es importante comentar que se también se valoró la posibilidad de hacer k-fold

cross validation, sin embargo, una validación cruzada conllevaría mucho más tiempo

para hacerse y no daría tiempo a finalizar la fase de experimentación planteada. Para

futuras actualizaciones dentro de esta investigación se recomienda que, si hay tiempo

suficiente, se realice una validación cruzada tomando como K un valor típico como

podría ser 5 o 10, lo cual permitirá obtener resultados moderadamente más fiables.

5.3 Minería de datos

Aquí buscamos extraer patrones útiles a partir de las nubes de puntos mediante

el entrenamiento supervisado del modelo de la red con el objetivo de ser capaces de

segmentar una nube de puntos para diferenciar los objetos que constituyen el

fragmento de ciudad. El resultado obtenido de la minería permite clasificar cada punto

asignándole una etiqueta de las nombradas anteriormente.

Ya adelantado en múltiples ocasiones, para conseguir esto se tomará el

proyecto RepSurf (disponible en GitHub) y se adaptará de manera que acepte

cualquier conjunto de datos. Cabe mencionar que es una fase que ha sido muy

complicada de realizar, destacando la dificultad del arranque del proyecto y

remarcando lo costosa que ha sido computacionalmente y temporalmente hablando,

a lo que se le suman además limitaciones asociadas al hardware.

5.3.1 Adaptación del proyecto RepSurf

Encontrar un proyecto que sea compatible con una versión de CUDA aceptada

por la gráfica fue una ardua tarea que requirió de investigación y muchos intentos. A

esto se le suma la dificultad de las dependencias en Python, convirtiendo el simple

arranque de un proyecto en una actividad alimentada por una gran incertidumbre. La

búsqueda de un proyecto de redes neuronales que fuera de utilidad tuvo como punto

partida los proyectos de redes que se probaron en la página de Semantic3D, sin

embargo, al ser proyectos con varios años lo cierto es que no fue posible iniciar

ninguno con éxito por sistemas operativos, versiones de bibliotecas,

incompatibilidades con la tarjeta gráfica y CUDA, compiladores, etc. Fue algo que se

repitió durante varias semanas hasta que se consiguió, con dificultades, arrancar

desde el subsistema de Linux el proyecto RepSurf (Surface Representation for Point

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 101

Clouds), un proyecto más moderno que contiene 3 implementaciones hechas en

PyTorch: red PointNet++, red Point Transformer y Umbrella RepSurf, un método

basado en la red PointNet++ (SSG) al que se le aplica el módulo Umbrella RepSurf

creado en esa investigación para mejorar la representación de superficies.

El proyecto RepSurf es un trabajo excelente, no obstante, es importante decir

que la falta de documentación hizo que en ocasiones se requiriera prácticamente de

ingeniería inversa. Aunque sin duda si hay algo que debía ser modificado para el

actual trabajo de investigación era el tema de la parametrización relacionada con los

conjuntos de datos. En efecto, el proyecto estaba preparado exclusivamente desde el

código para trabajar con el conjunto de datos S3DIS, por lo que se adaptó de manera

que permitiese ejecutarse entero como originalmente era, y para ejecutarse con un

conjunto de datos personalizado pasando un archivo JSON con las etiquetas usadas.

Esto supuso la creación de una nueva estructura de archivos paralela a la original

dentro del proyecto donde se encontraban las adaptaciones de los códigos para poder

ejecutar con conjuntos de datos personalizados.

Una vez adaptado el proyecto ya se pueden ejecutar los comandos de

entrenamiento con conjuntos de datos personalizados. Más adelante nos centraremos

en los comandos, pero en cuanto a las carpetas, las más importantes a tener en

cuenta son:

• La carpeta con los archivos de comandos de entramiento y pruebas:

“RepSurf/segmentation/scripts/custom”

• La carpeta destinada a los archivos de entrenamiento y validación:

“RepSurf/segmentation/data/CUSTOM/trainval_fullarea”.

• La carpeta destinada a los archivos de prueba:

“RepSurf/segmentation/data/CUSTOM/data/CUSTOM/testval_fullarea”.

• La carpeta con todos los logs y el modelo entrenado:

“RepSurf/segmentation/log/PointAnalysis/log”.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 102

Como nota adicional, es importante mencionar que este proyecto está

preparado para hacer validación cruzada pese a que en nuestro caso no se haya

hecho por temas de tiempo. Ello es algo que se maneja con el nombre del archivo.

Todos los archivos de la carpeta comienzan por “Area_X” donde X es un número que

representa un subconjunto de los datos de entrenamiento, permitiendo fácilmente

destinar grupos concretos de datos para la validación. Por ejemplo, si se desea hacer

la validación con los archivos del área 1, es tan simple como darles de nombre

Area_1+nombre_original, y dejar para el resto del entrenamiento los otros archivos,

cuyo nombre podría ser, por ejemplo, Area_2+nombre_original (valdría cualquier

número menos el 1).

5.3.1.1 Problemas de memoria: swapping

Pese a estar adaptado el proyecto a nuestra investigación, este seguía sin

funcionar correctamente. Dando un poco de contexto, este trabajo se comenzó a

elaborar en el ordenador del laboratorio con la tarjeta gráfica 3060Ti, la cual es

bastante potente, pero mostraba algunas limitaciones con el proyecto RepSurf que

fueron descubiertas durante unos entrenamientos de prueba con datos de ejemplo.

Fue en ese instante donde, aunque no hubiera ningún fallo durante la ejecución, ésta

no era capaz de terminar y además la memoria de vídeo (VRAM) estaba llena.

Para entender el problema hace falta entender su origen, y es que, con

frecuencia, cuando la ejecución de algún programa llena la memoria RAM, el sistema

operativo utiliza parte de la memoria del disco duro para gestionar el exceso de

trabajo. Este concepto es llamado memoria virtual y sucede de manera similar entre

la VRAM y la memoria RAM: si hay falta de VRAM, se transfieren datos de ésta a la

RAM para soportar el trabajo.

Lo que está ocurriendo en nuestro caso es que hay VRAM insuficiente y

PyTorch intenta guardar el exceso en RAM. Sin embargo, para ejecutar un proceso

en la tarjeta gráfica éste debe estar cargado en VRAM. Si estamos guardando datos

de VRAM en RAM, para usarlos antes se deben transferir. A esto se le llama swapping

y ralentiza el entrenamiento debido a la latencia de las transferencias de datos, las

diferencias en la velocidad de acceso a memoria y la carga añadida asociada a la

gestión de memoria.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 103

Esto se puede solventar en cierta medida con la reducción del tamaño de los

lotes y la carga de datos, posible con los parámetros de PyTorch: batch_size,

batch_size_val y workers. Sin embargo, eso no fue suficiente y obligó a cambiar de

equipo durante el proceso en pro de otro con una gráfica especializada para el

entrenamiento, una A4500. Esto fue lo que solucionó el problema de memoria que se

estaba dando hasta el momento y lo que permitió continuar con la investigación.

5.3.2 Redes ofrecidas por el proyecto RepSurf

Una vez adaptado el proyecto se describirá brevemente el funcionamiento de

las redes que incorpora RepSurf: PointNet++, Point Transformer y Umbrella RepSurf.

Estas explicaciones, complementarias a las presentadas en el capítulo 2.3 (Redes

neuronales artificiales para nubes de puntos), serán acompañadas de sus respectivos

comandos para llevar a cabo tanto el entrenamiento como la evaluación.

5.3.2.1 Red PointNet++

PointNet ha sido la base de muchos de los métodos de visión 3D con nubes de

puntos, siendo capaz de procesar nubes de puntos sin la necesidad de convertirlas a

estructuras 3D como los vóxeles. Sin embargo, en su primera versión, pese al correcto

funcionamiento para capturar las características globales de las nubes de puntos,

presentaba limitaciones para detectar características locales. Esto supone que:

• Las características aprendidas en datos densos pueden no generalizarse a

regiones muestreadas de forma más dispersa.

• Los modelos entrenados para nubes de puntos dispersas pueden no

reconocer estructuras locales de gran detalle.

Para solventar este problema surge la red PointNet++, que procesa las nubes

de puntos a diferentes escalas de manera jerárquica. Para ello la red parte de un

muestreo inicial de puntos representantes y uniformemente espaciados en la nube

para posteriormente agruparlos según vecindades y aplicar a estas la clásica

PointNet. De esta manera, gracias al muestreo en cada nivel de la red se va

reduciendo la cantidad de puntos, y a través de abstracciones del conjunto se

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 104

aumentan las características extraídas de cada grupo. Esto conlleva que en los niveles

más bajos se capturan detalles locales, mientras que los niveles más altos capturan

características globales.

Para usar esta red dentro del proyecto, teniendo correctamente organizado el

conjunto de datos, habría que ejecutar desde la terminal los siguientes comandos para

entrenamiento y evaluación respectivamente:

sh RepSurf/segmentation/scripts/custom/train_pointnet2.sh

sh RepSurf/segmentation/scripts/custom/test_pointnet2.sh

5.3.2.2 Red Point Transformer

En boca de todos desde hace un tiempo está la arquitectura Transformer,

presentada en 2017. Muchas fueron las adaptaciones de esta arquitectura,

inicialmente planteada para el campo de PLN, pero de entre todas ellas destacaremos

la red Point Transformer, la cual aplica la idea de usar mecanismos de atención para

trabajar con nubes de puntos. Así pues, esta red neuronal extiende el concepto de

atención de las arquitecturas Transformers, permitiendo a cada punto de la nube

"atender" a otros puntos en su vecindad para determinar su importancia relativa. Esto

ayuda a que la red capture con gran eficacia las relaciones locales entre los puntos,

centrándose en las aquellas interacciones más relevantes.

Para usar esta red, teniendo correctamente organizado el conjunto de datos,

habría que ejecutar desde la terminal los siguientes comandos para entrenamiento y

evaluación respectivamente:

sh RepSurf/segmentation/scripts/custom/train_Point Transformer.sh

sh RepSurf/segmentation/scripts/custom/test_Point Transformer.sh

5.3.2.3 Módulo Umbrella RepSurf

Dentro de este proyecto constantemente se habla de Umbrella RepSurf y lo

cierto es que no se trata de una red neuronal, sino que más bien es un módulo que

actúa en conjunto con la red PointNet++ en su versión SSG (Single-Scale Grouping).

Aunque en este proyecto solo se aplica sobre PointNet++, la integración de RepSurf

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 105

se puede hacer con otras redes neuronales aplicadas a nubes de puntos permitiendo,

a cambio de un pequeño coste computacional, captar mejor las características y con

ello mejorar la eficacia en tareas como clasificación y segmentación.

En efecto, el proyecto RepSurf nace con el objetivo de proporcionar una ayuda

adicional a las redes neuronales para incrementar su rendimiento gracias a la mejora

de la representación de superficies que incorpora a estas como información extra. De

los 2 módulos que se desarrollaron dentro del proyecto, en la actual investigación se

probará Umbrella RepSurf, la segunda variante que se fundamenta en la curvatura de

"sombrilla" y amplía el campo de percepción al construir superficies a partir de los K

puntos vecinos más cercanos. Dicha curvatura se obtiene mediante el cálculo de la

tangente de la superficie reconstruida, información que usa para obtener una

representación más detallada de la geometría local. Esto supone una gran ayuda

incluso cuando los puntos se encuentran organizados irregularmente sobre el espacio.

Con la Ilustración 5.14, el artículo representaba la idea del modelo Triangular RepSurf

y Umbrella RepSurf como representaciones de geometría local para el proceso de

aprendizaje automático.

Ilustración 5.14: Concepto de RepSurf

Para usar este módulo sobre la red PointNet++ (la adaptada por defecto),

teniendo correctamente organizado el conjunto de datos, habría que ejecutar desde

la terminal los siguientes comandos para entrenamiento y evaluación

respectivamente:

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 106

sh RepSurf/segmentation/scripts/custom/train_RepSurf_umb.sh

sh RepSurf/segmentation/scripts/custom/test_RepSurf_umb.sh

5.3.3 Métricas utilizadas para el cálculo del error

Una vez conocidas las redes y los comandos que ejecutan sus respectivos

entrenamientos y pruebas, el siguiente paso es comprender qué sucede dentro de los

periodos de ejecución. Esta información de interés viene incluida dentro de archivos

log como los de la captura inferior.

Ilustración 5.15: Output simplificado

Como se aprecia, para entender correctamente la información de este tipo de

archivos es necesario conocer la teoría que respaldan las métricas. A continuación,

se comentarán para qué sirven las métricas que se utilizan a lo largo de la etapa de

experimentación: Loss, Acc (Accuracy), mAcc (mean Acc), IoU (Intersection over

Union), mIoU (mean IoU) y OA (Overall Accuracy). Para esto, antes definiremos las

siguientes variables, utilizadas con frecuencia en el ámbito del aprendizaje

automático:

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 107

• TP = verdadero positivo (True Positive)

• TN = verdadero negativo (True Negative)

• FP = falso positivo (False Positive)

• FN = falso negativo (False Negative)

5.3.3.1 Valor de pérdida (Loss)

Esta medida, obtenida de la función de error, es utilizada en el entrenamiento

de modelos de ML para cuantificar el rendimiento y la precisión de un modelo de

machine learning teniendo en cuenta el etiquetado de los datos. Es crucial para la

optimización de los modelos y actúa como guía dentro del proceso de entrenamiento

de manera que a lo largo del mismo se trata de reducir para aproximarlo lo máximo

posible a cero.

5.3.3.2 Métrica Acc (Accuracy)

La métrica Acc se usa para obtener la precisión del modelo asociada a cada

clase existente. Ella valora cuántas veces el modelo acertó tanto al clasificar

correctamente como al no clasificar incorrectamente los puntos. La expresión

matemática que nos permite calcularla se muestra a continuación.

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5.1)

En otras palabras:

• El total de predicciones correctas de una clase se expresa como: TP + TN

• El total de todas las predicciones de una clase se expresa como:

TP + TN + FP + FN

Otra métrica relacionada con Acc es mAcc, que representa la media de la Acc

de todas las clases.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 108

5.3.3.3 Métrica IoU (Intersection over Union)

La métrica IoU mide la intersección sobre la unión de las predicciones y las

etiquetas reales, es decir, la precisión por clase. Es útil para medir qué tan bien el

modelo ha segmentado o clasificado una clase específica en la nube de puntos y de

alguna manera está directamente asociada a la correcta detección de la forma de los

objetos. Matemáticamente se vería así:

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (5.2)

En otras palabras:

• El total de puntos de una clase correctamente detectados como positivos

(intersección) se expresa como: TP

• El total de puntos que podrían pertenecer a la clase de estudio (unión) se

expresa como: TP + FP + FN

De la mano de la IoU está mIoU, métrica que representa la media de la IoU de

todas las clases.

5.3.3.4 Métrica OA (Overall Accuracy)

La métrica OA calcula el porcentaje de puntos clasificados correctamente entre

todos los puntos de la nube. En términos matemáticos, sea C el número de clases

total, la fórmula sería la siguiente:

𝑂𝐴 =
∑𝑖=1

𝑐 𝑇𝑃𝑖

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5.3)

En otras palabras:

• El total de puntos correctamente detectados independientemente de la clase

se expresa como: ∑𝑖=1
𝑐 𝑇𝑃𝑖

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 109

• El total de todas las predicciones se expresa como: TP + TN + FP + FN

Con esta métrica se puede obtener la exactitud general del modelo midiendo

los puntos correctamente etiquetados frente al total de puntos. La diferencia entre esta

métrica y la métrica Acc es que ahora se evalúan solo los puntos correctamente

etiquetados en general, mientras que la Acc distinguía entre clases. Esto implica que

cuando hablamos de la mAcc, media de Acc entre las clases, se dé más importancia

a aquellas instancias pertenecientes a clases minoritarias para la ponderación,

mientras que en OA al tener cada instancia la misma ponderación, estas instancias

de clases minoritarias quedan algo más ocluidas por las otras clases.

5.3.4 Parámetros y aumentación

Al igual que las métricas, es importante conocer qué parámetros se pueden

configurar, así como conocer el término de aumentación. Comenzando por los

parámetros, entre los más interesantes destacamos:

• Optimizador: algoritmo utilizado para actualizar los pesos del modelo con el

fin de minimizar la función de pérdida durante el entrenamiento. En el caso

de los experimentos que se harán, se tomará el optimizador Adam.

• Iteraciones totales: es el número total de iteraciones en un ciclo de

entrenamiento para entrenar un modelo de aprendizaje automático. Estas

iteraciones configuran 2 fases: una de entrenamiento donde se realizan

actualizaciones de los pesos basadas en los datos de entrenamiento, y otra

de validación, donde se mide la capacidad del modelo para generalizar los

datos no vistos.

• Iteraciones mínimas: número de épocas que deben suceder antes de que se

lleven a cabo validaciones dentro del entrenamiento. Hasta que no se alcanza

este momento, el modelo aprende de los datos de entrenamiento pero no se

estudia la capacidad que este tiene para generalizar. Aunque este proceso

se podría hacer desde la primera epoch, lo común es que no sea así por

cuestiones de tiempo.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 110

• Iteraciones de decadencia: número de iteraciones tras las cuales se reduce

la tasa de aprendizaje para permitir un ajuste más fino a medida que el

modelo se acerca a la convergencia.

• Tasa de aprendizaje: afecta a la velocidad a la que el algoritmo alcanza las

ponderaciones óptimas, es decir, converge.

• Tasa de decadencia: proporción en la que la tasa de aprendizaje se reduce

a lo largo del tiempo para estabilizar el entrenamiento y mejorar la

generalización.

• Tasa de decadencia de pesos: técnica que penaliza pesos grandes en el

modelo para evitar el sobreajuste, lo que promueve modelos más simples y

generalizables.

Sumado a esto, cabe destacar que el proyecto permite aumentación dinámica.

La aumentación de datos se define como el proceso de generación artificial de nuevos

datos, a partir de los datos ya existentes, para el entrenamiento de modelos de ML.

Esto es beneficioso para el entrenamiento del modelo porque permite mejorar su

capacidad de generalizar. Aunque la aumentación se puede hacer durante el

procesado de los datos, la aumentación dinámica es una práctica habitual que además

se da aquí porque permite optimizar el almacenamiento en disco al no requerir de

guardar versiones aumentadas de los datos. Concretamente, dentro de este trabajo

se permiten varias formas de aumentación, pero como en este proyecto el color no se

tendrá en cuenta, se describirán los tipos de aumentación relacionados con la posición

de los puntos:

• Aumentación por escalado: mediante el argumento --aug_scale se crean

nuevos datos a partir de escalados a las nubes de puntos.

• Aumentación por rotación: mediante el argumento --aug_rotate se crean

nuevos datos a partir de rotaciones, en los ejes especificados.

• Aumentación por translación: mediante los argumentos --aug_shift y --

aug_jitter se crean nuevos datos mediante el intercambio de puntos vecinos,

y mediante el desplazamiento de puntos respectivamente.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 111

• Aumentación por volteo: mediante el argumento --aug_flip se crean nuevos

datos mediante el reflejo de las nubes de forma horizontal o vertical.

5.3.5 Optimización de hiperparámetros

Para configurar estos parámetros presentados hay que recordar que este

trabajo tiene limitaciones de tiempo muy importantes que han marcado su ejecución.

Dada la situación y teniendo en cuenta la duración de cada entrenamiento, es clave

decir que hay que ajustar con cuidado entre otros parámetros aquellos relacionados

con las épocas y la aumentación, pues son los que repercuten de forma directa al

tiempo de ejecución.

El proyecto en sí tenía configuraciones de ejemplo que no terminaban de

ajustarse a nuestra investigación, por lo que se hicieron pruebas con las redes y los

datos que serían utilizados finalmente durante los experimentos. A continuación, se

van a mostrar resultados de dichas pruebas con los cuales se tratará de elegir el valor

idóneo para el número de las iteraciones. Los siguientes gráficos, Ilustración 5.16 y

Ilustración 5.17, muestran el comportamiento de una de las redes, PointNet++, para

el entrenamiento con nubes de puntos de ciudades reales:

Ilustración 5.16: Evolución de métricas por épocas

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Evolución de las métricas por
número de iteraciones

mIoU mAcc OA

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 112

Como puede observarse en la Ilustración 5.16, los resultados de las métricas

(media de IoU, media de Acc y el OA) para este caso concreto dejan de mejorar

aproximadamente sobre la época 40. Aunque la gráfica muestra el caso particular de

la red PointNet++, el comportamiento se repite con el resto de redes de manera

similar.

Ilustración 5.17: Evolución del valor de pérdida por épocas

Como puede verse en la Ilustración 5.17, sucede lo mismo con el valor de la

función de pérdida o valor loss. Vemos que este valor inicialmente disminuye muy

rápidamente, lo cual es algo beneficioso, pero que a partir de las 20 iteraciones apenas

mejora, obteniéndose el mejor valor en la época 38.

Los parámetros de ejemplo estaban ajustados con un total de 100 épocas, sin

embargo, a raíz de estas pruebas se llegó a la conclusión de que las redes convergen

mucho antes. Es por esta razón que se marcó 50 como total de épocas, un valor que

aseguraba en las pruebas realizadas que se encontrarían buenos resultados dando

algo de margen adicional. Cabe destacar que, en este tipo de algoritmos, exceder el

número de épocas necesarias puede ocasionar el sesgo del modelo y la reducción de

la generalización del mismo. Posteriormente, en conocimiento del número total de

épocas, se regularon también los valores para las épocas mínimas (30) y las épocas

de decadencia (30→40).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Evolución del loss por número de épocas

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 113

En cuanto al tema de la aumentación podemos decir que es una práctica

recomendada que en concreto dentro de este proyecto ha tenido cierto impacto,

mejorando los resultados de pruebas preliminares hechas con los datos de ejemplo

que éste traía (S3DIS). Pese la potencial mejora de los resultados, hay que tener en

cuenta el aumento del coste computacional por esta aumentación dinámica. Es por

ello que para evitar excesos en uso de VRAM y en tiempo, se decidió utilizar

únicamente un tipo de aumentación, la aumentación por escala. Efectivamente, esta

aumentación era la que mejores resultados ofrecía durante el periodo de pruebas a

pequeña escala con un factor de 0,1.

Por consiguiente, se resumirá en la Tabla 5.1 toda la información asociada a la

configuración de todos los entrenamientos llevados a cabo a lo largo de este proyecto,

incluyendo los parámetros comentados y configuraciones recomendadas para el uso

de las redes de este proyecto:

Parámetro Valor

Optimizer (optimizer) AdamW

Total epochs (epoch) 50

Minimum epochs for validation (min_val) 30

Learning decay epochs (lr_decay_epochs) 30→40

Learning rate (learning_rate) 0,006

Learning decay rate (lr_decay) 0,1

Weight decay (weight_decay) 0,01

Scale factor (aug_scale) 0,1

Tabla 5.1: Configuración de todos los entrenamientos

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 114

5.4 Evaluación e interpretación

Llegados a este punto, ya se entrenaron todos los modelos con los datos reales,

los datos sintéticos, y los datos mixtos. Con esto nos adentramos en el corazón del

proyecto, un total de 4 experimentos que tratarán de estudiar la validez de las hipótesis

de inicio. Para cada uno se repasará cuál es su finalidad, su procedimiento y sus

resultados, con el fin de concluir con un análisis de los patrones detectados y el

resultado de la validación de la hipótesis correspondiente.

5.4.1 Experimento 1: Entrenamiento y testeo con datos reales

Este primer experimento tratará de entrenar y probar el modelo con datos reales

tomados del conjunto de Toronto-3D. Para ello se ha tenido en cuenta, como se

explicaba en capítulos anteriores, que los conjuntos de entrenamiento y de prueba

sean disjuntos. El resultado del mismo dará los porcentajes de acierto, los resultados

de la función de pérdida y los valores de las métricas que se obtienen con estas redes

neuronales usando los datos reales. La importancia del experimento es mayúscula

pese a que no esté orientado hacia la validación de las hipótesis planteadas porque

formaliza la base del resto de experimentos.

Tras la prueba del modelo entrenado con los datos de Toronto-3D sobre las

redes, se han recopilado todos los datos almacenados en los logs y se han volcado

sobre la Tabla 5.2 (a excepción de la clase indefinida que no proporciona información).

En ella queda representado por colores los porcentajes recuperados para una mejor

visualización. Concretamente, los tonos más verdosos muestran mejores resultados,

mientras que los más rojizos muestran los peores resultados.

Label
PointNet++ Point Transformer Umbrella RepSurf

IoU Acc IoU Acc IoU Acc

Road 94,06 99,27 93,39 99,4 94,05 99,22

Road marking 0,01 0,01 0 0 1,37 1,37

Natural 93,61 96,26 90,73 92,79 94,49 96,42

Building 88,28 97,15 84,95 97,56 89,84 96,78

Utility line 61,46 63,05 61,21 63,73 63,22 64,29

Pole 68,82 76,74 68,91 77,48 72,43 84,5

Car 84,3 87,38 74,37 79,03 81,7 88,24

Fence 12,2 29,64 14,98 22,1 18,72 43,62

Tabla 5.2: Resultados del experimento 1

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 115

Repasando uno a uno los datos, lo primero que ha de destacarse son los

buenos resultados que se obtienen en todas las redes para la detección de todos los

objetos, a excepción de las clases “Road marking” y “Fence”, donde todas fallan en

mayor o menor medida. Sobresalen de entre los porcentajes obtenidos aquellos que

reflejan las métricas de detección de los objetos Road, Natural y Building, rozando y

superando el 90%. Sin embargo, para entender por qué los resultados para los objetos

“Road marking” y “Fence” han sido tan bajos hay que tener en cuenta el contexto del

experimento, así como el de los datos.

Comenzando con la primera puntualización, este experimento trabaja

solamente con la posición de los puntos y sus etiquetas, sin tener en cuenta el color.

Esto conlleva que el modelo no sea capaz de diferenciar el suelo de las marcas viales,

pues estas marcas son únicamente suelo pintado donde no cambia la geometría.

Determinar dónde están dichas marcas solo con la posición de los puntos sería un

resultado engañoso, producto de un sobreaprendizaje. Es por ello que, aunque no se

hayan podido detectar las marcas del suelo, es un resultado esperado y acorde. En

cuanto a la segunda problemática, los datos contienen una gran cantidad de puntos

que se han etiquetado usando las clases disponibles, pero en diferentes proporciones.

La existencia de clases con mayor número de instancias registradas frente a otras

conlleva que, en casos de mayor desbalanceo entre clases, el modelo no aprenda

correctamente sobre aquellas con menos instancias. Esto que se acaba de explicar

es lo que sucede con la clase “Fence”, donde apenas hay instancias y la repercusión

se da de forma directa en los resultados. Aunque no es la única perjudicada porque,

pese a obtener buenos resultados en las otras clases, este problema se refleja

también para “Utility line” y “Pole”, clases en las que hay menos instancias que las que

se podrían encontrar en otras como “Road”.

Vistos los datos numéricos, es interesante ver los resultados de una manera

más visual para comprenderlos mejor. En la Ilustración 5.18 se muestra la nube

etiquetada original, mientras que en la Ilustración 5.19 está el resultado de la

segmentación con Umbrella RepSurf (la que mejor funcionó en este experimento).

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 116

Ilustración 5.18: Nube de puntos esperada

Ilustración 5.19: Nube de puntos obtenida

Los resultados obtenidos visualmente se ven casi iguales y la mayoría de los

fallos se encuentran en puntos alejados de la zona con mayor concentración (además

de aquellos pertenecientes a las clases minoritarias). Con esto venimos a decir que

en lugares donde la densidad de puntos es muy baja es más complicado diferenciar

correctamente a qué pertenece cada punto debido a la falta de vecinos que permitan

catalogarlo.

Siempre es interesante ver cómo queda la nube de puntos y es por ello que se

seguirá mostrando en el resto de experimentos, sin embargo, es complicado analizar

en detalle con este tipo de visualización. Para aumentar el rigor del estudio, así como

para facilitar las comparaciones entre los resultados de las 3 redes se agrupará todo

en gráficos de barras. A continuación, se presentarán 2 gráficos para comparar las

métricas IoU y Acc de las 3 redes.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 117

Ilustración 5.20: Métrica IoU entre redes para experimento 1

En esta gráfica, Ilustración 5.20, se muestra una comparativa de los resultados

de la métrica IoU donde se corrobora el comportamiento similar que se da en todas

las redes para el problema de la segmentación. De forma sintetizada recordamos que

el IoU está asociado a la forma de los volúmenes segmentados por clase. Como ya

se explicó, esta métrica mide la superposición entre la región predicha por el modelo

y la región real. En el diagrama de barras, aunque con comportamientos muy

parecidos, destaca RepSurf en casi todos los casos, seguida por PointNet++ y

dejando a Point Transformer en la cola.

Ilustración 5.21: Métrica Acc entre redes para experimento 1

0

10

20

30

40

50

60

70

80

90

100

Road Road marking Natural Building Utility line Pole Car Fence

Experimento 1: Métrica IoU

IoU PointNet++ IoU Point Transformer IoU Umbrella Repsurf

0

20

40

60

80

100

120

Road Road marking Natural Building Utility line Pole Car Fence

Experimento 1: Métrica Acc

Acc PointNet++ Acc Point Transformer Acc Umbrella Repsurf

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 118

En este otro gráfico, Ilustración 5.21, vemos la misma comparativa pero ahora

con la métrica Acc, que en esencia viene a indicar cuántos de los puntos se han

etiquetado correctamente para cada clase en particular. Esta métrica frente a la otra

puede dar algo menos de información, pero siempre es importante tenerla en cuenta

para contrastar los resultados. Al igual que en la métrica IoU, RepSurf destaca como

la red que es capaz de acertar mayor número de puntos a la hora de etiquetar, sobre

todo con las clases minoritarias (aunque en este tipo de instancias presentan

dificultades). Con el resto de clases hay que indicar que todas se comportan

prácticamente similar.

Como se ha visto, todas tienen un comportamiento similar, destacando de

media RepSurf, algo que se observa mejor en la Ilustración 5.22. En ella se pueden

ver los valores medios de IoU y Acc, introduciendo ahora la métrica OA. La métrica

OA recordemos que sirve para indicar el porcentaje de puntos etiquetados

correctamente en total, diferenciándose de la mAcc porque la OA pondera todos los

puntos por igual.

Neural Network mIoU mAcc OA

PointNet++ 66,97 72,17 94,64

Point Transformer 65,39 70,23 93,84

Umbrella RepSurf 68,42 74,94 94,82

Tabla 5.3: Resultados generales del experimento 1

Como vemos se obtienen porcentajes de acierto para OA que rondan entre el

93.84% y 94.82%, lo cual son valores muy buenos. En cuanto al acierto por clase,

dado por mAcc, tenemos una media de acierto de entre el 70.23% y el 74.94%.

Finalmente, en cuanto al acierto dado por la mIoU, encontramos de media valores que

están entre el 66.97 y el 68.42%. Aunque la mIoU y la Acc tengan valores muy

inferiores a los que muestra OA, no hay que dejarse engañar, son valores medios

entre clases con un número de instancias no balanceado (cada fallo en instancias de

clases minoritarias es condenado más que cada fallo en clases mayoritarias). Esto

significa que las redes funcionan bien en la mayoría de las instancias, pero pecan de

fallar con aquellas con las que el modelo está menos acostumbrado a trabajar.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 119

Con estos resultados ya tenemos una base sólida y de referencia para pasar a

ejecutar el resto de experimentos.

5.4.2 Experimento 2: Entrenamiento y testeo con datos sintéticos

El segundo experimento tiene como objetivo intentar validar la primera hipótesis

del proyecto: “El comportamiento de las redes obtenido a partir de un entrenamiento

y testeo con nubes de puntos sintéticas generadas con el LiDAR virtual es similar al

obtenido a partir de nubes de puntos reales”. Para ello se han entrenado y probado

los modelos con datos completamente sintéticos, pertenecientes al conjunto propio

Synthetic Cloud 3D. La hipótesis podría ser validada si las redes pueden aprender de

forma similar con valores sintéticos a como lo hacían en el experimento 1, es decir,

deben obtenerse resultados parecidos en las métricas de ambos experimentos. A

continuación, se muestran los resultados recopilados en la Tabla 5.4.

Label
PointNet++ Point Transformer Umbrella RepSurf

IoU Acc IoU Acc IoU Acc

Road 84,51 95,79 72,19 88,91 85,52 95,36

Road marking 5,26 5,62 8,02 8,63 9,74 10,94

Natural 84,3 91,19 54,57 68,26 88,05 93,82

Building 94,36 98,26 94,33 98,16 95,31 98,92

Utility line 0 0 0 0 0 0

Pole 69,58 72,26 65,78 67,68 70,19 72,39

Car 77 86,13 75,22 85,39 80,85 90,89

Fence 0 0 0 0 0 0

Tabla 5.4: Resultados del experimento 2

Aunque de un simple vistazo los resultados son parecidos, pero con tasas de

acierto algo menos elevadas, destaca la obtención del 0% en las métricas de las

clases “Utility line” y “Fence”. La explicación es simple, en los datos sintéticos

utilizados no había instancias de dichas clases. Es un resultado esperable y mejorable

si se incluyeran este tipo de elementos en la generación procedural de ciudades.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 120

Ilustración 5.22: Nube de puntos obtenida

Ilustración 5.23: Nube de puntos obtenida

Visualmente, en la Ilustración 5.22 y la Ilustración 5.23 vemos que los

resultados efectivamente siguen siendo buenos para un ejemplo tomado con el

modelo entrenado con Umbrella RepSurf (nube original y nube segmentada

respectivamente). A continuación, con la Tabla 5.5 vamos a ver la información general

del experimento.

Neural Network mIoU mAcc OA

PointNet++ 57,22 61,03 91,43

Point Transformer 52,24 57,45 84,63

Umbrella RepSurf 58,85 62,48 92,32

Tabla 5.5: Resultados generales del experimento 2

 En este caso la red que parece devolver mejores resultados es RepSurf. Ello

es algo que se repite cara al anterior experimento, sin embargo, como se había

adelantado, hay tasas menos elevadas de acierto. Esta reducción podría ser debida a

múltiples factores, destacando:

• La menor densidad de puntos por nube: las nubes de Toronto-3D tienen

una mayor cantidad de puntos (sobre 800 mil) que las de las nubes sintéticas

(sobre 50 mil), por ende, el número de relaciones entre puntos vecinos se

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 121

reduce en este experimento y ocasiona mayores dificultades para aprender

patrones.

• La completitud de la nube LiDAR: la nube de Toronto-3D fue tomada con

un sensor en movimiento mientras que la nube sintética fue tomada con un

sensor inmóvil. Pese a que el sensor sintético simulaba al sensor real en su

configuración, el hecho de no haber aplicado movimiento se traduce en nubes

de puntos con mayor oclusión y menos geometría. Esto hace más compleja

la detección de algunos objetos al ser estudiados únicamente por los puntos

de una de sus caras.

Sin embargo, aunque esto se pudiera dar, no hay que cegarse con estos

valores procedentes de medias. Hay que tener en cuenta que estos valores se han

perjudicado mucho debido a las clases que no tienen instancias en el conjunto

sintético (clases “Utility line” y “Fence”). Para analizar correctamente el experimento

se va a proceder a presentar unos gráficos de barras que comparen por redes y por

métricas los resultados de los experimentos 1 y 2.

Ilustración 5.24: Comparativa entre exp 1 y
exp 2 para IoU con PointNet++

Ilustración 5.25: Comparativa entre exp 1 y
exp 2 para Acc con PointNet++

En estos primeros diagramas tenemos los resultados comparativos de las

métricas IoU (Ilustración 5.24) y Acc (Ilustración 5.25) para la red PointNet++.

Ciertamente obtener los mismos resultados no es posible sin tener los mismos datos

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

IoU (exp 1) 94,06 0,01 93,61 88,28 61,46 68,82 84,3 12,2

IoU (exp 2) 84,51 5,26 84,3 94,36 0 69,58 77 0

0

10

20

30

40

50

60

70

80

90

100

Similitud del IoU entre experimentos
(PointNet++)

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

Acc (exp 1) 99,27 0,01 96,26 97,15 63,05 76,74 87,38 29,64

Acc (exp 2) 95,79 5,62 91,19 98,26 0 72,26 86,13 0

0

20

40

60

80

100

120

Similitud del Acc entre experimentos
(PointNet++)

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 122

y la misma semilla entre 2 ejecuciones distintas, sin embargo, se pueden alcanzar

resultados aproximados. Si atendemos a los gráficos, podemos observar que para las

clases “Road”, “Natural” y “Car” en el primer experimento se obtuvieron resultados

ligeramente superiores. De igual manera se obtuvieron resultados mejores en el

segundo experimento para las clases “Building” y “Pole” (aunque esta última

levemente inferior en el estudio de la forma, la IoU).

En estos otros gráficos (Ilustración 5.26 e Ilustración 5.27) vemos que hay más

diferencias. Se trata del modelo entrenado con la red Point Transformer y en este

segundo experimento han mostrado resultados inferiores, sobre todo con las clases

“Road” y “Natural”, y levemente superiores en las clases “Building” y “Car”. Al igual

que en PointNet++, los resultados son siempre superiores para la métrica Acc que los

dados por la métrica IoU. Podemos decir que Point Transformer ha funcionado por lo

general peor que PointNet++ para este caso, aunque es cierto que se repiten algunos

patrones que se expondrán más adelante.

Ilustración 5.26: Comparativa entre exp 1 y
exp 2 para IoU con Point Transformer

Ilustración 5.27: Comparativa entre exp 1 y
exp 2 para Acc con Point Transformer

En estos últimos diagramas, Ilustración 5.28 e Ilustración 5.29, vemos los

resultados con el método de Umbrella RepSurf. Ciertamente son resultados más

similares a los que encontrábamos con la red PointNet++, con valores más parejos

entre ambos experimentos, aunque algo por debajo a los obtenidos con el primer

experimento mientras que la media de estos supera a la de las demás redes.

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

IoU (exp 1) 93,39 0 90,73 84,95 61,21 68,91 74,37 14,98

IoU (exp 2) 72,19 8,02 54,57 94,33 0 65,78 75,22 0

0

10

20

30

40

50

60

70

80

90

100

Similitud del IoU entre experimentos
(Point Transformer)

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

Acc (exp 1) 99,4 0 92,79 97,56 63,73 77,48 79,03 22,1

Acc (exp 2) 88,91 8,63 68,26 98,16 0 67,68 85,39 0

0

20

40

60

80

100

120

Similitud del Acc entre experimentos
(Point Transformer)

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 123

Encontramos mejora de rendimiento dentro este experimento con las clases “Building”

y “Car” (la IoU de este último es algo inferior pero aún muy igualado con la referencia).

Ilustración 5.28: Comparativa exp 1 y exp 2
para IoU con RepSurf

Ilustración 5.29: Comparativa exp 1 y exp 2
para Acc con RepSurf

Llegados a este punto, lo cierto es que es interesante mencionar una serie de

tendencias globales que se han repetido dentro de las 3 redes. Ello nos puede llevar

a la pregunta de si son fruto del azar o si por el contrario nuestros datos de Synthetic

Cloud 3D no son tan parecidos a los reales (los del conjunto de Toronto-3D):

• La clase “Buildings” con los datos sintéticos se ha visto beneficiada en

todos los casos en comparación con el experimento base. Esto podría

deberse a la mayor simplicidad de la geometría que ahora tienen las paredes

de estos frente a la que tenía en los datos reales, las cuales representaban

pequeñas irregularidades. Si se quisiera simular dichas irregularidades en los

datos sintéticos, una idea para posteriores investigaciones podría ser la de

introducir aumentación en forma de ruido, asignando pequeñas variaciones

en la posición de los puntos de los edificios.

• Ha aumentado en todos los casos la detección del objeto “Road

Marking”. Como se puede observar, en este experimento los modelos están

intentando predecir las marcas del suelo. Para detectar estas marcas no hay

geometría ni color que ayuden a la detección, lo cual significa que está

aprendiendo patrones en función de las posiciones relativas de los objetos

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

IoU (exp 1) 94,05 1,37 94,49 89,84 63,22 72,43 81,7 18,72

IoU (exp 2) 85,52 9,74 88,05 95,31 0 70,19 80,85 0

0

20

40

60

80

100

120

Similitud del IoU entre experimentos
(Umbrella RepSurf)

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

Acc (exp 1) 99,22 1,37 96,42 96,78 64,29 84,5 88,24 43,62

Acc (exp 2) 95,36 10,94 93,82 98,92 0 72,39 90,89 0

0

20

40

60

80

100

120

Similitud del Acc entre experimentos
(Umbrella RepSurf)

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 124

representados en la nube. Ello nos hace pensar que el conjunto de datos

tiene poca diversidad, porque de tenerla no se podrían detectar objetos de

los cuales no se tiene nada de información y que deberían de ser invisibles

para el modelo. Esto también puede conllevar un posible sobreaprendizaje

que sesgue nuestros resultados.

• La clase “Road”, clase mayoritaria de Toronto-3D, siempre se perjudica

con los datos sintéticos. Pese a una aparente simplificación del suelo y

siguiendo el mismo razonamiento llevado con la detección de edificios, la

lógica nos dice que deberían mejorarse los resultados. Pero nada más lejos

de la realidad los modelos sorprenden empeorando para todas las redes. En

este caso lo que puede estar sucediendo es que la simplicidad de los datos

sintéticos haga que el modelo genere patrones levemente funcionales para

detectar el objeto “Road Mark”, entorpeciendo la decisión. Con los datos

reales es seguro que hay mayor variación sobre la forma y posición de las

marcas viales, haciendo que sea más complicado encontrar un patrón que se

ajuste y provocando como resultado la elección del objeto “Road” cuando hay

duda entre si un punto es de carretera o de marca vial.

 Tras el estudio detenido de los resultados podemos decir que, aun habiendo

conseguido tasas de acierto parejas con el anterior experimento, se han detectado

tendencias generales que muestran posibles diferencias entre los datos reales y

sintéticos. Estas diferencias son causadas principalmente por la cantidad de puntos

entre las nubes, la densidad variable dentro de ellas, la falta de ruido en la geometría

sintética frente a la real y la falta de variabilidad en la generación procedural.

 En respuesta a lo que se plantea con la primera hipótesis, lo cierto es que no

se puede llegar a validar por completo el enunciado. Efectivamente el comportamiento

es parecido pese a las posibles diferencias entre datos y se podría decir que todas las

redes son capaces de aprender de manera similar tanto con los datos reales como

con los sintéticos. No obstante, validar por completo la hipótesis a partir de estos

resultados sería irresponsable. Esto es así porque no se están teniendo en cuenta las

clases “Utility line” y “Fence” (clases sin instancias sintéticas), a lo que además se

añade la existencia de patrones generales de comportamiento que difieren de los

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 125

encontrados en el primer experimento, destacando en particular aquel detectado con

la clase “Road mark”, cuyo origen no está claro si es fruto del azar o si en realidad las

redes no se comportan igual frente a esta clase entre la primera y la segunda prueba.

5.4.3 Experimento 3: Entrenamiento con datos sintéticos y testeo

con datos reales

Este tercer experimento busca validar la segunda hipótesis del proyecto, con

diferencia la más complicada: “El entrenamiento de las redes neuronales con nubes

de puntos reales puede ser sustituido con un entrenamiento alimentado con datos

completamente sintéticos, dando buenos resultados en el testeo con nubes de puntos

reales”. Para ello se han tomado los modelos del experimento 2, es decir, aquellos

entrenados con los datos sintéticos de Synthetic Cloud 3D, pero esta vez se han

probado con los datos reales de Toronto-3D. La hipótesis podría ser validada cuando

las pruebas muestren resultados tan buenos, como mínimo, a los conseguidos en el

experimento que marca la base (experimento 1). A continuación, se muestran los

resultados recopilados en la Tabla 5.6.

Label
PointNet++ Point Transformer Umbrella RepSurf

IoU Acc IoU2 Acc3 IoU4 Acc5

Road 85,5 89,68 93,45 98,37 90,53 95,36

Road marking 3,1 8,87 0 0 0,63 1,03

Natural 60,01 92,69 67,87 90,55 57,8 95,48

Building 31,04 37,14 50,91 64,93 18,52 19,36

Utility line 0 0 0 0 0 0

Pole 1,7 1,79 0,07 0,08 0,2 0,2

Car 12,18 14,69 16,82 25,13 18 21,88

Fence 0 0 0 0 0 0

Tabla 5.6: Resultados del experimento 2

Como se adelantaba, era un experimento complicado, con muchas variables e

incertidumbre. Al igual que sucedía en el experimento 2, el modelo está entrenado con

archivos que no poseen puntos de las clases “Utility line” y “Fence”, por lo que le es

imposible detectarlos en el testeo. Pese a ello, a nivel general sí que parece que ha

habido una bajada importante en la eficacia. Parece que la detección de la clase

“Road” sigue teniendo buenos resultados, seguida de la detección de la clase “Natural”

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 126

y “Buildings”. En cuanto al resto de clases no se puede decir precisamente que haya

habido buenos resultados, aunque sí que hay indicios de detección de la clase “Car”.

Visualmente hablando, la Ilustración 5.30 muestra la nube esperada y la

Ilustración 5.31 es la nube obtenida. Como se aprecia, tienen bastante parecido y

podemos decir que estos mejoran en la detección de los objetos de gran tamaño,

aunque haya algo de imprecisión.

Ilustración 5.30: Nube de puntos esperada

Ilustración 5.31: Nube de puntos obtenida

A nivel general entre las 3 redes podemos decir, tal y como sugiere la Tabla

5.7, que la que mejor ha funcionado es Point Transformer. Esto es curioso porque

para todos los experimentos de este proyecto es la que peores resultados ha tenido

siempre. Esto plantea la posibilidad de que Point Transformer sea más capaz de

encontrar los atributos que caracterizan a los objetos a nivel general que el resto de

redes, las cuales están más sesgadas al tipo de datos de entrenamiento.

Neural Network mIoU mAcc OA

PointNet++ 32,61 38,32 79,17

Point Transformer 36,57 42,12 86,55

Umbrella RepSurf 31,74 37,03 81,63

Tabla 5.7: Resultados generales del experimento 3

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 127

Es importante mencionar que, pese a los aparentes resultados deficientes

obtenidos, hay un valor para el OA del 86.55, es decir, en más del 86% de los casos

se han evaluado los puntos correctamente. Esto supone un error de solo un 14%, un

error muy bajo pero que como vemos por el resto de métricas y que, en contraste con

la tabla anterior, viene a decirnos que hay muchos puntos de las clases minoritarias

que no se clasifican correctamente. Ello es algo a considerar porque en ocasiones la

importancia del problema recae en encontrar ese pequeño porcentaje de puntos, algo

común por ejemplo en la detección de vehículos o peatones dentro de la conducción

autónoma, un problema que, con los resultados obtenidos, este modelo no sería capaz

de funcionar en carreteras reales como las de Toronto-3D. Cambiando la forma de ver

esta explicación, podemos decir que estos modelos, de primeras, son capaces de

detectar grandes objetos representados por inmensas masas de puntos, pero no lo

son para detectar los detalles representados por pocas cantidades de puntos.

En lo consecutivo se analizarán en detalle los resultados entre este

experimento y el de referencia en búsqueda de más información. Primeramente,

tenemos los valores del modelo entrenado con la red PointNet++. Obsérvese que la

clasificación de puntos, métrica Acc (Ilustración 5.32), de las clases “Road” y “Natural”

arroja resultados similares a los vistos en la primera prueba, aunque se aprecia una

bajada en la precisión de la forma, dada por IoU (Ilustración 5.33), sobre todo en la

clase “Natural”. Al igual que en el experimento 2, las clases “Utility line” y “Fence”,

siguen sin detectarse, encontrándose también repetido el fenómeno visto con “Road

marking”. Por otro lado, separamos las clases “Building” y “Car”, que se han detectado

con una frecuencia destacable, aunque con mucha menos precisión tanto en IoU y

Acc. Finalmente, y con gran importancia, hay que subrayar que se ha perdido casi por

completo la detección de la clase “Pole” frente a anteriores experimentos,

detectándose incluso menos que la clase “Road marking”, que debería ser invisible.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 128

Ilustración 5.32: Comparativa entre exp 1 y
exp 3 para IoU con PointNet++

Ilustración 5.33: Comparativa entre exp 1 y
exp 3 para Acc con PointNet++

Por parte de la red Point Transformer (Ilustración 5.34 e Ilustración 5.35) no hay

diferencias en la detección de la carretera ni de sus marcas viales. Respecto a la red

anterior, se repite la bajada de la precisión en la forma, IoU, para la clase “Natural”,

de igual manera que se repite la reducción en ambas métricas para las clases

“Building” y “Car”. De cara a la detección de los puntos clasificados como “Pole”, esta

red tampoco parece detectar dicha clase con éxito.

Ilustración 5.34: Comparativa entre exp 1 y
exp 3 para IoU con Point Transformer

Ilustración 5.35: Comparativa entre exp 1 y
exp 3 para Acc con Point Transformer

Road
Road

marking
Natural Building

Utility
line

Pole Car Fence

IoU (exp 1) 94,06 0,01 93,61 88,28 61,46 68,82 84,3 12,2

IoU (exp 3) 85,5 3,1 60,01 31,04 0 1,7 12,18 0

0

10

20

30

40

50

60

70

80

90

100

Similitud del IoU entre experimentos
(PointNet++)

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

Acc (exp 1) 99,27 0,01 96,26 97,15 63,05 76,74 87,38 29,64

Acc (exp 3) 89,68 8,87 92,69 37,14 0 1,79 14,69 0

0

20

40

60

80

100

120

Similitud del Acc entre experimentos
(PointNet++)

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

IoU (exp 1) 93,39 0 90,73 84,95 61,21 68,91 74,37 14,98

IoU (exp 3) 93,45 0 67,87 50,91 0 0,07 16,82 0

0

10

20

30

40

50

60

70

80

90

100

Similitud del IoU entre experimentos
(Point Transformer)

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

Acc (exp 1) 99,4 0 92,79 97,56 63,73 77,48 79,03 22,1

Acc (exp 3) 98,37 0 90,55 64,93 0 0,08 25,13 0

0

20

40

60

80

100

120

Similitud del Acc entre experimentos
(Point Transformer)

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 129

Finalmente, para Umbrella RepSurf (Ilustración 5.36 e Ilustración 5.37) vemos

similitudes importantes con las anteriores redes, pero sobre todo con la red

PointNet++ para todas las clases y en ambas métricas. Como vemos, la clase “Road”

se detecta bien, hay una reducción en la detección de la forma para la clase “Natural”,

se reduce mucho la correcta clasificación y forma de los puntos de las clases “Building”

y “Car”, y se da el fenómeno de la clase “Road marking” y “Pole”. Esta red, al igual

que PointNet++, obtiene peores resultados que Point Transformer.

Ilustración 5.36: Comparativa entre exp 1 y
exp 3 para IoU con RepSurf

Ilustración 5.37: Comparativa entre exp 1 y
exp 3 para Acc con RepSurf

Como se ve y se adelantaba en el experimento 2, los datos reales tienen

diferencias apreciables, al menos cara a la detección interna de patrones, pues de no

ser así se habrían segmentado las nubes con un éxito similar al del experimento 1. De

entre las tendencias generales encontramos el buen funcionamiento de las clases

“Road” y “Natural”, así como la reducción de la precisión en otras como “Building”,

pero vamos a destacar en concreto los siguientes comportamientos:

• La imposibilidad de detección de la clase “Pole”, algo que posiblemente

se dé porque los modelos confunden a las farolas con el tronco de los árboles,

marcando todas las farolas como parte de la vegetación por ser el tipo de

objeto que más ha visto en su entrenamiento.

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

IoU (exp 1) 94,05 1,37 94,49 89,84 63,22 72,43 81,7 18,72

IoU (exp 3) 90,53 0,63 57,8 18,52 0 0,2 18 0

0

10

20

30

40

50

60

70

80

90

100

Similitud del IoU entre experimentos
(Umbrella RepSurf)

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

Acc (exp 1) 99,22 1,37 96,42 96,78 64,29 84,5 88,24 43,62

Acc (exp 3) 95,36 1,03 95,48 19,36 0 0,2 21,88 0

0

20

40

60

80

100

120

Similitud del Acc entre experimentos
(Umbrella RepSurf)

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 130

• La gran bajada de precisión en la detección de los vehículos, algo que

seguramente esté causado por tener fragmentos de ciudades inmóviles.

Durante la medición de la ciudad de Toronto-3D había vehículos en

movimiento y estos eran escaneados por el LiDAR en lugares distintos en

cada pasada que hacía. Sin embargo, en los fragmentos procedurales que

nosotros hemos hecho los vehículos no se mueven y en todas las pasadas

todos los vehículos se sitúan en el mismo sitio. Esta diferencia en la

representación de los vehículos puede estar entorpeciendo al modelo para

detectar la totalidad de los puntos clasificados con la clase Car cuando se

prueba con datos reales.

Tras estas pruebas, es importante comentar que no se puede validar la

hipótesis de sustitución total de los datos con este experimento dado que no se ha

alcanzado a igualar o superar los resultados del primero. No obstante, los resultados

sí que muestran que con datos sintéticos se puede reconocer correctamente algunos

elementos, lo que nos lleva a pensar que con una generación procedural más realista

se podrían obtener mejores resultados que pudieran llevar a la validación de la

hipótesis.

A partir de este experimento, y como paso intermedio entre esta investigación

y una próxima que tenga en cuenta las mejoras que se proponen en esta memoria,

surge la duda si sería posible conseguir el efecto buscado, pero con unos datos de

entrenamiento parcialmente sintéticos. Con ello se propone una última hipótesis

dentro de este proyecto:

• Hipótesis 3: “El entrenamiento con datos completamente sintéticos puede

mejorarse mucho introduciendo un bajo porcentaje de nubes de puntos

reales, mejorando la detección de detalles”.

5.4.4 Experimento extra: Entrenamiento con datos mixtos y

testeo con datos reales

Este cuarto experimento adicional tratará de validar la hipótesis 3, presentada

en las conclusiones del experimento 3. Ahora lo que se hará es entrenar las redes con

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 131

un 80% de datos sintéticos (Synthetic Cloud 3D) y un 20% de datos reales (Toronto-

3D), para posteriormente probar los modelos con datos reales. Con ello se busca

reducir la cantidad de datos reales necesarios para obtener un modelo con resultados

cercanos a los que se obtendrían si se hubiera entrenado con el 100% de los datos

reales. Se podrá decir que el experimento tiene éxito y valida la hipótesis si es capaz

de mejorar los resultados que se tuvieron con el experimento anterior. Dicho esto,

veamos la tabla de resultados, Tabla 5.8.

Label
PointNet++ Point Transformer Umbrella RepSurf

IoU Acc IoU Acc IoU Acc

Road 93,16 98,39 83,88 88,16 93,4 98,39

Road marking 0 0 3,36 11,66 0,53 0,53

Natural 84,63 96,13 76,36 87,18 83,28 98,28

Building 79,55 88,82 60,93 91,54 83,93 90,99

Utility line 28,96 29,43 2,77 2,78 28,13 28,46

Pole 48,76 55,92 8,35 8,59 50,79 59,1

Car 57,85 69,4 30,79 33,45 42,18 46,18

Fence 1,62 1,62 0 0 0,06 0,06

Tabla 5.8: Resultados del experimento 4

Los resultados de este experimento son bastante mejores a los resultados

conseguidos con el experimento 3 y más cercanos aparentemente a los del

experimento 1. Visualmente se observa la nube original frente a la obtenida con la

Ilustración 5.38 e Ilustración 5.39 respectivamente:

Ilustración 5.38: Nube de puntos esperada

Ilustración 5.39: Nube de puntos obtenida

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 132

En cuanto a las métricas generales (Tabla 5.9), ahora la red que mejor ha

funcionado de media ha sido la red PointNet++, con resultados muy cercanos a los

conseguidos con el módulo Umbrella RepSurf y alcanzando un valor OA de hasta el

92.15%.

Neural Network mIoU mAcc OA

PointNet++ 54,95 59,97 92,15

Point Transformer 40,72 47,04 82,69

Umbrella RepSurf 53,59 58 92,05

Tabla 5.9: Resultados generales del experimento 4

Para ver en detalle los resultados se estudiarán los diagramas de barras

(Ilustración 5.40 e Ilustración 5.41) que enfrentan los obtenidos en este experimento

con los obtenidos del experimento 1 para ver lo próximos que se encuentran,

añadiendo además los resultados del experimento 3 para comprobar si ha habido y

cómo ha sido la mejora de los resultados. Comenzando con la red PointNet++, los

resultados mejoran en todos los casos frente al experimento 3, obteniendo valores de

IoU y Acc muy similares sobre todo con las clases “Road”, “Natural” y “Building”. En

este experimento además se recupera la detección de las clases “Utility line” y “Pole”,

mejorando mucho la detección de la clase “Car”.

Ilustración 5.40: Comparativa entre exp 1,
exp2 y exp 3 para IoU con PointNet++

Ilustración 5.41: Comparativa entre exp 1,
exp2 y exp 3 para Acc con PointNet++

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

IoU (exp 1) 94,06 0,01 93,61 88,28 61,46 68,82 84,3 12,2

IoU (exp 3) 85,5 3,1 60,01 31,04 0 1,7 12,18 0

IoU (exp 4) 93,16 0 84,63 79,55 28,96 48,76 57,85 1,62

0

10

20

30

40

50

60

70

80

90

100

Similitud del IoU entre experimentos
(PointNet++)

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

Acc (exp 1) 99,27 0,01 96,26 97,15 63,05 76,74 87,38 29,64

Acc (exp 3) 89,68 8,87 92,69 37,14 0 1,79 14,69 0

Acc (exp 4) 98,39 0 96,13 88,82 29,43 55,92 69,4 1,62

0

20

40

60

80

100

120

Similitud del Acc entre experimentos
(PointNet++)

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 133

En cuanto a la red Point Transformer (Ilustración 5.42 e Ilustración 5.43), lo

primero que destaca es que los mejores resultados para la clase “Road” se obtuvieron

en el experimento 3 y no se han podido mejorar con ningún experimento. Esto se debe

a lo que anteriormente se explicó relacionado a los errores en la clasificación de la

carretera procedentes del intento de detectar la clase “Road marking”. Referente al

resto de clases el comportamiento del modelo en este experimento frente al anterior

mejora, aunque poco en la mayoría de casos, siendo además superado en

rendimiento por los resultados del experimento 1.

Ilustración 5.42: Comparativa entre exp 1,
exp2 y exp 3 para IoU con Point

Transformer

Ilustración 5.43: Comparativa entre exp 1,
exp2 y exp 3 para Acc con Point

Transformer

Para terminar, RepSurf (Ilustración 5.44 e Ilustración 5.45) repite los

comportamientos que tenían las otras redes. Se obtienen resultados mejorados

respecto al experimento 3 pero aun inferiores a los del experimento de referencia.

Entre lo más destacable está la mejora de la detección de la forma, IoU, de la clase

“Natural” frente al anterior experimento teniendo en cuenta que en este la cantidad de

puntos correctamente clasificados era similar.

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

IoU (exp 1) 93,39 0 90,73 84,95 61,21 68,91 74,37 14,98

IoU (exp 3) 93,45 0 67,87 50,91 0 0,07 16,82 0

IoU (exp 4) 83,88 3,36 76,36 60,93 2,77 8,35 30,79 0

0

10

20

30

40

50

60

70

80

90

100

Similitud del IoU entre experimentos
(Point Transformer)

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

Acc (exp 1) 99,4 0 92,79 97,56 63,73 77,48 79,03 22,1

Acc (exp 3) 98,37 0 90,55 64,93 0 0,08 25,13 0

Acc (exp 4) 88,16 11,66 87,18 91,54 2,78 8,59 33,45 0

0

20

40

60

80

100

120

Similitud del Acc entre experimentos
(Point Transformer)

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 134

Ilustración 5.44: Comparativa entre exp 1,
exp2 y exp 3 para IoU con RepSurf

Ilustración 5.45: Comparativa entre exp 1,
exp2 y exp 3 para Acc con RepSurf

En cuanto a patrones generales interesantes detectados podemos decir que:

• Se mejoran los resultados en gran medida frente al experimento anterior

en todas las redes, destacando la red PointNet++.

• Se recupera la detección de la clase “Pole” en este experimento frente al

anterior, lo cual nos indica que ahora es capaz de diferenciar correctamente

las clases “Pole” y “Natural”.

• La clase “Fence” sigue siendo muy complicada de detectar dado que

apenas hay instancias de ella en el conjunto de entrenamiento.

En vista del análisis esta vez sí que podemos validar la última hipótesis, la hipótesis

3. Hemos conseguido demostrar que las redes son capaces de mejorar mucho su

rendimiento incluyendo sólo un pequeño porcentaje (20%) de datos reales a nuestro

entrenamiento.

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

IoU (exp 1) 94,05 1,37 94,49 89,84 63,22 72,43 81,7 18,72

IoU (exp 3) 90,53 0,63 57,8 18,52 0 0,2 18 0

IoU (exp 4) 93,4 0,53 83,28 83,93 28,13 50,79 42,18 0,06

0

10

20

30

40

50

60

70

80

90

100

Similitud del IoU entre experimentos
(Umbrella RepSurf)

Road
Road

marking
Natural Building

Utility

line
Pole Car Fence

Acc (exp 1) 99,22 1,37 96,42 96,78 64,29 84,5 88,24 43,62

Acc (exp 3) 95,36 1,03 95,48 19,36 0 0,2 21,88 0

Acc (exp 4) 98,39 0,53 98,28 90,99 28,46 59,1 46,18 0,06

0

20

40

60

80

100

120

Similitud del Acc entre experimentos
(Umbrella RepSurf)

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 135

6 RESULTADOS Y DISCUSIÓN

Para la obtención de los resultados de este proyecto fue necesario generar

proceduralmente un conjunto de ciudades con el software de CityEngine.

Posteriormente esas ciudades fueron fragmentadas y etiquetadas con una aplicación

desarrollada en Unity exclusivamente para este proyecto. Ese etiquetado era

completamente personalizado, gracias a una serie de tablas de conversión que

permitían asociar etiquetas y materiales a los objetos según su textura.

Ilustración 6.1: Fragmento de ciudad sintético etiquetado

Para dichos fragmentos se ubicó un sensor LiDAR virtual y se obtuvo un

conjunto de nubes de puntos que, tras aplicar una selección y procesado de datos, se

utilizó para crear un nuevo dataset, bautizado como Synthetic Cloud 3D.

Ilustración 6.2: Nube de puntos sintética

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 136

Una vez en posesión del dataset sintético Synthetic Cloud 3D y del dataset real

Toronto-3D, comenzó una etapa de experimentación que buscó validar 2 hipótesis

iniciales mediante la realización de 3 experimentos. Para ello se seleccionó y se

adaptó en los ordenadores del laboratorio un proyecto que incluía múltiples redes

neuronales aplicadas a nubes de puntos: PointNet++, Point Transformer y Umbrella

RepSurf (módulo que trabaja sobre PointNet++ SSG). Tras la realización de los

experimentos no se consiguió llegar a resultados concluyentes, pero sí que hubo

grandes avances para la investigación. Con un experimento se pudo comprobar que

todas las redes eran capaces de aprender de manera más o menos similar, al menos

para las clases que tenían instancias. Mientras tanto en otro experimento se consiguió

ver que, aunque no se puedan sustituir los datos reales por datos sintéticos, sí que

existían patrones que prometían que con una generación procedural más avanzada

podría llegar a conseguirse. Además, a raíz del último experimento surgió una nueva

hipótesis que cuestionaba si era posible que, con una baja cantidad de datos reales ,

se pudieran mejorar los resultados de este. Esta hipótesis extra supuso la realización

de un experimento adicional que finalmente logró validarla con éxito.

Resumiendo de forma comparativa y a gran escala los resultados entre los

experimentos tenemos los siguientes gráficos, los cuales nos muestran por red cuáles

han sido los valores registrados por las métricas.

Ilustración 6.3: Comparación de resultados generales en PointNet++

66,97
72,17

94,64

57,22
61,03

91,43

32,61
38,32

79,17

54,95
59,97

92,15

0

10

20

30

40

50

60

70

80

90

100

mIoU mAcc OA

Resumen PointNet++

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 137

En PointNet++ (Ilustración 6.3) se han obtenido en todos los casos los mejores

resultados con el experimento 1 (entrenamiento y prueba con datos reales) mientras

que los peores datos se han conseguido con el experimento 3 (entrenamiento con

sintéticos y prueba con reales). Los resultados del cuarto experimento (entrenamiento

con datos mixtos y prueba con reales) a nivel general fueron muy similares a los

resultados con el experimento 2 (entrenamiento y prueba con datos sintéticos). En

todos los casos y para todas las métricas, el experimento 4 mejora al experimento 3.

Centrándonos en las métricas, se muestra mayor facilidad en la medición de la Acc,

cantidad de puntos acertados por clase de media, que la del IoU, asociado a la forma.

De cara al OA podemos ver que la amplia mayoría de los puntos se clasifican

correctamente, superando el 90% en todos los experimentos a excepción del tercer

experimento.

Ilustración 6.4: Comparación de resultados generales en Point Transformer

En Point Transformer (Ilustración 6.4) se vieron los peores resultados a nivel

general entre los experimentos. Curiosamente esta red consiguió destacar sobre las

otras en el experimento 3, donde se obtuvieron resultados que llegaron a crecer frente

al experimento 2 y 4 en la métrica OA. Pese a esos resultados que incluso aumentaron

el OA, lo cierto es que relacionado al IoU y al Acc los resultados eran más bajos.

Igualmente, los mejores resultados se daban con el primer experimento, pues el

segundo experimento tuvo peores resultados y el cuarto experimento tampoco llegó a

igualar ni al primero ni al segundo.

65,39
70,23

93,84

52,24
57,45

84,63

36,57
42,12

86,55

40,72
47,04

82,69

0

10

20

30

40

50

60

70

80

90

100

mIoU mAcc OA

Resumen Point Transformer

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 138

Ilustración 6.5: Comparación de resultados generales en RepSurf

Umbrella RepSurf (Ilustración 6.5) dio resultados que en más de una ocasión

eran similares a la de la red PointNet++. Los mejores resultados siguen siendo

aquellos del experimento 1 y los peores los del resultado 3, encontrándose los

resultados de los experimentos 2 y 4 prácticamente parejos. Al igual que antes, la OA

muestra como la mayoría de los puntos son correctamente etiquetados, siendo el 81%

en el peor de los casos y superando el 92% para el resto.

 En lo que a tiempos de ejecución se refiere (entrenamiento + prueba) como

vemos en la Tabla 6.1, el experimento 1 fue el más lento, mientras que el experimento

2 fue el más rápido. Esto se debe a que el experimento 1 trabajaba únicamente con

datos reales, los cuales de media tienen 800000 puntos por nube, y el experimento 2

únicamente con datos sintéticos, los cuales tienen 50000 puntos por nube. Por tanto,

a mayor número de puntos mayor es el tiempo de ejecución y viceversa. Relacionado

a la velocidad de ejecución en función de la red, se puede apreciar que la red más

rápida es la red PointNet++, mientras que la más lenta es Point Transformer.

68,42
74,94

94,82

58,85
62,48

92,32

31,74
37,03

81,63

53,59
58

92,05

0

10

20

30

40

50

60

70

80

90

100

mIoU mAcc OA

Resumen Umbrella RepSurf

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 139

 PointNet++ Point Transformer Umbrella RepSurf

Experimento 1 393 2388 948

Experimento 2 152 507 164

Experimento 3 164 549 192

Experimento 4 247 997 411

Tabla 6.1: Comparativa de tiempos totales entre redes (en minutos)

Tras los análisis realizados, cabe mencionar también que se considera que la

experimentación tiene un margen de mejora que podría hacer posible la validación de

la hipótesis 1 y 2 del proyecto. Para ello habría que tener en cuenta tal y como se ha

comentado, la densidad y el número de puntos por nube, la característica del color, la

falta de ruido en las nubes sintéticas, la movilidad del sensor LiDAR y la naturaleza

inmóvil de los fragmentos sintéticos.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 140

7 CONCLUSIONES Y TRABAJOS FUTUROS

El presente no sería hoy sin el futuro que un día alguien imaginó. La creatividad

propone los proyectos de ingeniería más punteros y quien los hace posibles son la

investigación, el desarrollo, la innovación y equipos de personas como yo con muchas

ganas de cambiar el mundo.

Sin duda este ambicioso proyecto I+D+i ha impulsado una nueva línea de

investigación dentro del laboratorio al que pertenezco. La incertidumbre y la necesidad

de nuevos conocimientos para dar con soluciones novedosas provocaron que me

adentrase en el mundo de la investigación. Esta se me presentó en un inicio como un

árido terreno que iba mostrando su claridad conforme más me adentraba en campos

como el Machine Learning, la generación procedural, tecnologías LiDAR, datasets

para aprendizaje con nubes de puntos, etc. Áreas que, si bien no eran del todo nuevas

para mí, sí que no las había trabajado tan en profundidad como hasta el momento.

Gracias al TFM podemos asegurar que he adquirido una gran cantidad de

conocimientos en el ámbito de la inteligencia artificial, planificación y gestión de

proyectos de investigación, así como también dentro del desarrollo de software

gráfico. Sumado a esto, no solo he afianzado una gran cantidad de saberes de la

carrera y profundizado en muchos otros más novedosos, sino que he sido capaz de

orientarlos de manera práctica y novedosa, dando un fruto merecido a las horas de

investigación dedicadas al trabajo. En resumidas cuentas, he madurado, al menos

desde el punto de vista personal, en el ámbito de la ingeniería.

Personalmente, y dando mi opinión, pienso que este tipo de trabajos son

apuestas para el mañana donde, dada la dificultad que presentan, aportan un valor

añadido pese a que no siempre se consigan los resultados esperados. Siendo muy

complicado obtener soluciones concluyentes, me alegro de pensar que esto será la

base para continuar el trabajo en el laboratorio. Los avances conseguidos permitirán

a otros investigadores continuar la investigación por donde la dejé, mejorando

aquellos puntos que se han ido detallando dentro de esta memoria, aportando ideas

renovadas y más novedosas de un futuro que a día de hoy aún está por descubrir.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 141

Para terminar, he de mencionar que este proyecto ha sido emocionante desde

que inició, sentimiento que impulsó el esfuerzo y dedicación hacia el mismo. Con ello,

esta investigación finaliza con unos resultados que, aun no siendo concluyentes para

todas las hipótesis, considero muy buenos y sobrepasan las estimaciones calculadas

al inicio del trabajo. Relativo a los trabajos futuros, se enumerarán algunos de los

aspectos a pulir que quedarán pendientes para una próxima ocasión:

• Creación de un prototipo que aplique los modelos dentro de una actividad

real que pueda ayudar de forma directa a la población proporcionando un

servicio.

• Experimentación con otros conjuntos de datos, tales como los ofrecidos

por Semantic3D, Semantic KITTI, Paris-Lille-3D o DublinCity.

• Ampliación del hardware y uso de servidor para ejecutar el proyecto de

redes neuronales con mayor cantidad de datos, lo que permitiría obtener un

modelo más consistente.

• Incremento de la variabilidad de las ciudades, introduciendo para su

generación un conjunto mayor de reglas de generación procedural, una

mejora del realismo de los modelos y mayor ruido (por ejemplo, personas y

vehículos con animación).

• Diseño de un algoritmo para la generación procedural de ciudades que

permita una mayor personalización y suponga una alternativa de código

abierto útil para la comunidad científica. Esta propuesta puede incluir el uso

de las redes generativas para generar modelos de edificios, mobiliario

urbano, vegetación y personas para utilizar las últimas tecnologías en pro de

unos resultados más variados y de calidad.

• Mejora de las nubes sintéticas usadas para los experimentos propuestos

en este proyecto, incorporando al menos: un LiDAR virtual en movimiento

para captura más detallada del entorno, captura del color junto con la posición

de los puntos y mayor aumentación.

• Mejora de la interfaz de la aplicación para fragmentar y etiquetar ciudades,

algo en lo que por las restricciones temporales no se ha entrado en

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 142

profundidad, pero sí que es importante porque simplificaría su uso para

futuras investigaciones.

Como vemos aún hay trabajo por hacer para desarrollar esta línea de

investigación, por lo que espero fantásticas ideas y mejoras de aquella persona que

continúe, de igual manera que también esperaré ansioso ver algún día resultados que

confirmen nuestras hipótesis.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 143

8 APÉNDICES

En esta sección se añadirá la documentación complementaria requerida para

garantizar una comprensión completa del proyecto.

8.1 Guía original del Trabajo Fin de Título

El entrenamiento de redes convolucionales para la segmentación y clasificación

de puntos en nubes de puntos está muy limitado por la escasez de datasets

completamente etiquetados que permitan realizar un entrenamiento completo, más

allá de los atributos relativos a la posición de los puntos. En este sentido, la necesidad

de generar datasets sintéticos, completamente clasificados, que permitan el

entrenamiento de las redes se vuelve imprescindible, si bien es crucial que la calidad

de los datasets sintéticos sea similar a la de los datasets reales. En este TFM se

propone la creación de un generador de entornos urbanos 3D, con alto grado de

realismos, de manera que las escenas generadas con el mismo puedan ser utilizadas

como datos de entrada de simuladores de sensores LiDAR. De esta manera se

lograrían datasets sintéticos que podrían ser utilizados para realizar el entrenamiento

de CNNS, permitiendo controlar los tipos de escenas usadas.

El trabajo incluirá no solamente la generación de estos datasets sino también

el entrenamiento de algunas de las arquitecturas de CNNs más utilizadas en el ámbito

de las nubes de puntos, con el fin de realizar una comparativa entre los resultados

obtenidos por entrenamientos de las mismas con datos reales y sintéticos.

8.1.1 Conocimientos previos

Se requieren conocimientos de informática gráfica y manejo de CNNs.

8.1.2 Objetivos del TFM

• Integrar elementos de Inteligencia Artificial e Informática Gráfica para obtener

productos de gran calidad.

• Obtener un generador de entornos urbanos, parametrizable, que permita la

definición de dichos entornos de forma sencilla.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 144

• Integrar los resultados con un simulador LiDAR externo para la obtención de

datasets etiquetados.

• Iniciarse en los mecanismos de investigación en el ámbito de la informática, en

concreto en realización de experimentación de calidad.

8.1.3 Metodología a desarrollar

Se utilizará una metodología incremental, dado que no se conocen con detalle

los resultados a obtener. Además, se utilizará una metodología propia de la

experimentación científica, con formulación de hipótesis, diseño de experimento,

ejecución, obtención de resultados y análisis de los mismos.

8.1.4 Documentación y formatos de entrega

Se entregará la documentación en formato PDF y el código generado en un

repositorio GIT o similar.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 145

8.2 Manuales de usuario

8.2.1 Aplicación para generar fragmentos de ciudades

Esta aplicación no requiere instalación, pues es un proyecto de Unity 23.2.7.f1,

simplemente deberá iniciarse con esa versión. Este proceso puede tardar un poco si

es la primera vez que se abre. Tras iniciarlo, deberá ejecutarse la única escena que

hay y pulsar el botón “GENERAR FRAGMENTOS”, tal y como se aprecia en la

Ilustración 8.1.

Tras darle una vez habrá que esperar unos segundos hasta que la interfaz

cambie y se empiecen a devolver fragmentos. Una vez termine de generar los

fragmentos se puede volver a generar fragmentos (incluso cambiando los valores de

configuración) tocando de nuevo el botón.

Ilustración 8.1: Aplicación fragmentadora abierto en Unity

A continuación se mostrará la información a tener en cuenta en formato de

pregunta y respuesta.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 146

8.2.1.1 ¿Cómo configurar el fragmentador?

Si se observa la jerarquía de objetos a la izquierda de la interfaz, se encontrará

un objeto llamado “Configuracion”. Seleccionándolo aparecerá en el inspector un

conjunto de atributos personalizables de manera que se permite:

• Indicar cuál es la ciudad que se fragmentará (objeto Ciudad de la escena).

• Indicar el dataset customizado. Esto servirá para obtener un archivo útil para

el sensor LiDAR virtual que permita etiquetar objetos según el conjunto de un

dataset concreto o personalizado.

• Indicar el número de puntos donde se generarán fragmentos. Atención: este

número es posible que no equivalga al número de fragmentos que realmente

se generen posteriormente. Esto se debe al funcionamiento interno y no es

un error.

• Indicar la capa, que es “Carretera”. Si se desea cambiar se tiene que utilizar

el nombre de la etiqueta del dataset ETIQUETAS_PROPIAS.

• Indicar el radio del fragmento.

• Indicar el incremento de altura máximo y mínimo, siendo estos la altura que

varía respecto al suelo para que no colisione la malla con el centro del

fragmento.

• Indicar la distancia de separación es la distancia entre centros de los

fragmentos. Para que dos fragmentos cualesquiera no compartan nada, esta

distancia debe ser mayor o igual al doble del radio del fragmento.

• Indicar la uniformidad de fragmentos marcando la cantidad de vacío que se

permite en cada uno de ellos. Por ejemplo, un valor de 0.8 tiene poco vacío,

mientras que un valor de 0.2 puede llegar a tener mucho vacío.

• Indicar si se desea previsualización LiDAR.

→ El resto de parámetros son atributos típicos utilizados para configurar un LiDAR.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 147

8.2.1.2 ¿Cómo cambiar de ciudad para procesarla en la aplicación?

Para cambiar las ciudades que se segmentarán hay que ir a la carpeta:

...\Fragmentador de ciudades\Assets\CiudadesCompletas

Una vez ahí, deberán meterse todos los archivos que haya dentro de:

...\Fragmentador de ciudades\Assets\CiudadesCompletas\Otras ciudades~

Posteriormente se moverá la carpeta con las mallas y texturas a la siguiente

dirección, junto con su archivo de metadatos correspondiente:

...\Fragmentador de ciudades\Assets\CiudadesCompletas

Esto se hace así porque Unity internamente identifica con un ID todas las mallas

y objetos del proyecto, por lo que si hay demasiados, se queda sin IDs que asociar y

falla. Para evitarlo lo que hacemos es guardar en la carpeta Otras ciudades~ aquellas

ciudades que no se estén utilizando. Atención: Unity dará problemas si se usa más de

una ciudad a la vez, por lo que se recomienda que únicamente haya una en uso dentro

de la carpeta CiudadesCompletas.

Una vez la ciudad esté ubicada en la carpeta de carga, carpeta

CiudadesCompletas, se abre Unity y esperamos a que cargue. Este proceso puede

conllevar varios minutos. Una vez esté Unity abierto, Tendremos que irnos a la única

escena, ir al objeto Ciudad, y eliminar todos los objetos hijos que cuelguen de él en la

jerarquía. Si en algún momento se borra el objeto de la ciudad, existe un prefab igual

en la carpeta de prefabs.

Una vez limpio el objeto ciudad, se debe ir a la carpeta donde está la ciudad

(CiudadesCompletas) y abrirla, algo que puede demorar varios minutos o más si la

ciudad es grande. Una vez abierta, debe ponerse en modo de lectura y escritura tanto

los modelos como las texturas (las texturas, si se desactiva el previsualizador, no son

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 148

necesarias de cambiar, aunque recomiendo mucho que se activen). La activación se

hace desde el inspector con un tic con el nombre Read/Write.

Tras estar preparados, se seleccionan todos los modelos y se arrastran dentro

del objeto Ciudad que hay instanciado en la escena. Finalmente nos aseguramos de

que la configuración es correcta y tiene todos los objetos requeridos asociados.

8.2.1.3 ¿Cómo añadir nuevas texturas a las tablas?

Si una textura queda etiquetada como indefinida se mostrará por la terminal.

En este caso, deberá incluirse en las tablas de la carpeta:

...\Fragmentador de ciudades\Tablas

Concretamente en TABLA_CLAVES y TABLA_CONVERSION_MATERIALES

se debe de añadir el nombre de la textura, o un patrón representativo, por ejemplo si

es "car_1", "car_2", "car_3", se debe usar "car". En la segunda columna, deberá

indicarse qué etiqueta propia debe tener o que material debe tener, en función de la

tabla que se esté modificando. Esto se puede hacer fácilmente desde Excel.

8.2.1.4 ¿Cómo incluir nuevos datasets?

Se pueden incluir nuevos datasets de referencia, aunque hay que tener en

cuenta varias cosas:

• Esto se hace en el archivo siguiente fácilmente modificable desde Excel:

...\Fragmentador de ciudades\Tablas\TABLA_CONVERSION_ETIQUETASCSV

• Debe añadirse una nueva columna con los nombres de las etiquetas, y otra

columna más con el mismo encabezado poniendo delante "Num_". Esta

segunda columna incluirá el valor numérico de la etiqueta.

• Debe incluirse en el código de configuración, concretamente en el enumerado

del dataset elegido, el nombre exacto de la cabecera de la columna de

nombres del nuevo dataset (la primera columna que hemos añadido).

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 149

8.2.1.5 Recomendaciones adicionales para la visualización

Para visualizar los fragmentos se recomienda utilizar Blender. Puede tardar un

poco en cargar el modelo.

Para nubes de puntos se recomienda utilizar CloudCompare o MeshLab.

8.2.2 Proyecto RepSurf

Si es la primera vez que se ve el proyecto, es importante mencionar que este

ha sido modificado de forma que sea lo menos invasiva posible, adaptándolo para que

pueda leer otros conjuntos de datos con otras etiquetas diferentes a las de S3DIS. A

continuación se describirán los puntos clave a tener en cuenta.

En primer lugar deberá tenerse iniciado el entorno de Anaconda en el WSL,

comando: conda activate entorno-repsurf. Tras esto, nos desplazamos hasta la

carpeta de segmentation. Desde ella, los comandos de entrenamiento se ejecutan

desde la terminal con:

sh ./scripts/custom/train_pointnet2.sh

sh ./scripts/custom/train_pointtransformer.sh

sh ./scripts/custom/train_repsurf_umb.sh

Los comandos de testeo son los siguientes:

sh ./scripts/custom/test_pointnet2.sh

sh ./scripts/custom/test_pointtransformer.sh

sh ./scripts/custom/test_repsurf_umb.sh

Los parámetros de los comandos mostrados se cambian en los archivos de la

carpeta siguiente, nunca desde el código:

RepSurf/segmentation/scripts/custom/

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 150

Los datasets se pondrán en estas carpetas, ya sea para entrenamiento o testeo

en su carpeta correspondiente:

data/CUSTOM/trainval_fullarea

data/CUSTOM/testval_fullarea

→Atención: el proyecto está preparado para validación cruzada, por ello es que todo

empieza por “Area_X”. Se debe indicar en la configuración qué archivos se usarán

para la validación, por ejemplo, los que inician por “Area_1”.

El modelo resultante del entrenamiento con cada red está en las siguientes

direcciones:

log/PointAnalysis/log/CUSTOM/pointnet2/checkpoints/model.ckpt

log/PointAnalysis/log/CUSTOM/pointtransformer/checkpoints/model.ckpt

log/PointAnalysis/log/CUSTOM/repsurf_umb/checkpoints/model.ckpt

Los logs y las visualizaciones aparecen en las siguientes direcciones, y estas

últimas se pueden ver con MeshLab o con CloudCompare:

log/PointAnalysis/log/CUSTOM/pointnet2/logs

log/PointAnalysis/log/CUSTOM/pointnet2/visual

log/PointAnalysis/log/CUSTOM/pointtransformer/logs

log/PointAnalysis/log/CUSTOM/pointtransformer/visual

log/PointAnalysis/log/CUSTOM/repsurf_umb/logs

log/PointAnalysis/log/CUSTOM/repsurf_umb/visual

8.2.2.1 ¿Cómo se cambia el conjunto de datos?

Para ello deberá hacerse un archivo de labels.json semejante a los que hay ya

creados y ubicarlo en la carpeta custom_labels. El archivo con el nombre de

labels.json es el que está activo cuando se hace uso de los scripts CUSTOM. Después

deberá adaptarse el script de procesamiento, convert2npy/convert_all_to_npy.py para

las nubes de puntos al formato requerido.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 151

→Atención: es posible que el conversor no pueda convertir los datos con el formato

que se requiera. Para más información mirar README ubicado en la convert2npy.

Luego se eliminarán los archivos anteriores de la carpeta de entrenamiento y

testeo y se añadirán los nuevos datos, teniendo en cuenta lo explicado acerca del

“Area_X” para determinar el conjunto de validación. Las carpetas son:

data/CUSTOM/trainval_fullarea

data/CUSTOM/testval_fullarea

8.2.2.2 ¿Cómo solucionar los problemas de VRAM?

Este tipo de problemas se pueden evitar en la mayoría de las ocasiones de

varias formas:

• Reduciendo la densidad de las nubes de puntos.

• Reduciendo desde los scripts de entrenamiento el tamaño del: --batch_size,

--batch_size_val, --workers. En cuanto a los parámetros de testeo se reducirá

el tamaño de: --batch_size_test.

→Otra opción es cambiar a un servidor, aunque tocará reinstalar.

8.2.2.3 ¿Cómo instalar desde cero el proyecto?

Si hay que arrancar desde cero el proyecto habrá que seguir el proceso

explicado en el repositorio original del proyecto RepSurf, pero con el proyecto

modificado de esta investigación. En el README del proyecto modificado se

encontrarán consejos adicionales para la instalación que podrían ser de utilidad.

8.2.3 Script para preparación de los datos

Este script se ubica en la carpeta RepSurf\segmentation\convert2npy y permite:

• La transformación a NPY con archivos PLY obtenidos del sensor LiDAR

virtual.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 152

• La transformación a NPY con archivos PLY obtenidos del dataset de Toronto-

3D.

• Eliminar automáticamente los puntos repetidos (mismo xyz).

• La traducción de las etiquetas de un estándar a otro, aunque requiere de

actualizar la función del código leer_PLY y procesar_archivos.

• La traducción de etiquetas de su formato de nombre a su formato numérico.

• La subdivisión del archivo procesado con --subdivide.

• La anulación del color, sustituyendo el RGB a valor 0,0,0 con el argumento:

--nullrgb.

• Centrar las nubes automáticamente en el origen con el argumento: --center.

Este programa convierte todo lo que reconozca dentro de la carpeta

ArchivosSinConvertir y lo vuelca en ArchivosConvertidos, borrando todo lo que esta

última tuviera dentro.

→Para ver los ejemplos revisar el README.

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 153

9 DEFINICIONES Y ABREVIATURAS

Acc: Accuracy. Métrica que mide la precisión de un modelo, calculando la proporción

de predicciones correctas sobre el total

ANN: redes neuronales artificiales (Artificial Neural Networks)

APM: gestión ágil de proyectos (Agile Project Management)

CNN: redes neuronales convolucionales (Convolutional Neural Network)

DL: Deep Learning. Conocido aprendizaje automático en español, se trata de una

rama de la inteligencia artificial que utiliza redes neuronales profundas para aprender

y procesar datos complejos.

EDT: Estructura De Trabajo. Esquema jerárquico que descompone un proyecto en

tareas o entregables.

GAN: redes neuronales generativas adversarias (Generative Adversarial Networks)

GameObjects: son contenedores que guardan las diferentes piezas que son

requeridas para hacer un personaje, una luz, un árbol, un sonido, etc. A estos además

se les pueden asociar componentes para dotarlos con algún comportamiento

GNN: redes neuronales de grafos (Graph Neural Networks)

IoU: Intersection over Union. Métrica para evaluar la precisión de la superposición

entre predicciones y resultados verdaderos en visión computacional

KDD: descubrimiento de conocimiento en bases de datos (Knowledge Discovery in

Databases). Proceso de descubrir patrones y conocimiento útil en grandes bases de

datos mediante técnicas de minería de datos

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 154

LiDAR: Light Detection And Ranging. Es una tecnología que utiliza láser para medir

distancias y crear mapas tridimensionales precisos, útil para vehículos autónomos,

topografía y arqueología

LSTM: memorias a largo y corto plazo (Long Short-Term Memory)

ML: Machine Learning

MLP: capas de multi-perceptrones (Multilayer Layer Perceptron)

MLS: sistema láser móvil (Mobile Laser System)

OA: Overall Accuracy. Métrica que evalúa el rendimiento general de un modelo,

calculando la precisión total de todas las clases

PLN: Procesamiento del Lenguaje Natural. Rama de la IA que permite a las máquinas

entender, interpretar y generar lenguaje humano

PMLC: ciclo de vida del proyecto (Project Management Life Cycle)

PNOA: Plan Nacional de Ortofotografía Aérea. Proyecto que genera ortofotos aéreas

precisas de todo el territorio nacional, utilizadas en cartografía y geodesia

RAM: Random Access Memory

RNN: redes neuronales recurrentes (Recurrent Neural Networks)

SDLC: ciclo de vida del desarrollo de software (Software Development Life Cycle)

SPG: grafo de super puntos (Super Point Graph). Representación gráfica en visión

por computadora donde puntos de interés se agrupan en "super puntos" para

procesamiento

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 155

SSG: Single-Scale Grouping. Técnica de agrupamiento de puntos en visión

computacional, enfocada en un solo nivel de escala

TPM: gestión tradicional de proyectos (Traditional Project Management)

VRAM: Video Random Access Memory

WSL: subsistema de Windows para Linux (Windows Subsystem for Linux)

XPM: gestión extrema de proyectos (Extreme Project Management)

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 156

10 BIBLIOGRAFÍA

[1] Y. I. H. Parish and P. Müller, “Procedural modeling of cities,” Proceedings of the

28th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH 2001, pp. 301–308, 2001, doi: 10.1145/383259.383292.

[2] S. Greuter, J. Parker, N. Stewart, and G. Leach, “Real-time procedural

generation of ‘pseudo infinite’ cities,” Proceedings of the 1st International

Conference on Computer Graphics and Interactive Techniques in Australasia

and South East Asia, GRAPHITE ’03, 2003, doi: 10.1145/604471.604490.

[3] K. R. Glass, C. Morkel, and S. D. Bangay, “Duplicating road patterns in South

African informal settlements using procedural techniques,” ACM International

Conference on Computer Graphics, Virtual Reality and Visualisation in Africa,

vol. 2006, pp. 161–169, 2006, doi: 10.1145/1108590.1108616.

[4] “Procedural City Modeling.” Accessed: Nov. 05, 2024. [Online]. Available:

https://www.researchgate.net/publication/242374560_Procedural_City_Modelin

g

[5] “GitHub - mxgmn/WaveFunctionCollapse: Bitmap & tilemap generation from a

single example with the help of ideas from quantum mechanics.” Accessed: Nov.

05, 2024. [Online]. Available: https://github.com/mxgmn/WaveFunctionCollapse

[6] “Inicio - Plan Nacional de Ortofotografía Aérea.” Accessed: Nov. 05, 2024.

[Online]. Available: https://pnoa.ign.es/

[7] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and M. Pollefeys,

“Semantic3D.net: A new Large-scale Point Cloud Classification Benchmark,”

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, vol. 4, no. 1W1, pp. 91–98, Apr. 2017, doi: 10.5194/isprs-annals-IV-1-

W1-91-2017.

[8] J. Behley et al., “SemanticKITTI: A Dataset for Semantic Scene Understanding

of LiDAR Sequences,” Proceedings of the IEEE International Conference on

Computer Vision, vol. 2019-October, pp. 9296–9306, Apr. 2019, doi:

10.1109/ICCV.2019.00939.

[9] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the

KITTI vision benchmark suite,” Proceedings of the IEEE Computer Society

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 157

Conference on Computer Vision and Pattern Recognition, pp. 3354–3361, 2012,

doi: 10.1109/CVPR.2012.6248074.

[10] X. Roynard, J. E. Deschaud, and F. Goulette, “Paris-Lille-3D: a large and high-

quality ground truth urban point cloud dataset for automatic segmentation and

classification,” International Journal of Robotics Research, vol. 37, no. 6, pp.

545–557, Nov. 2017, doi: 10.1177/0278364918767506.

[11] S. M. Iman Zolanvari et al., “DublinCity: Annotated LiDAR Point Cloud and its

Applications,” 30th British Machine Vision Conference 2019, BMVC 2019, Sep.

2019, Accessed: Nov. 05, 2024. [Online]. Available:

https://arxiv.org/abs/1909.03613v1

[12] W. Tan et al., “Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic

Segmentation of Urban Roadways,” IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops, vol. 2020-June, pp. 797–

806, Mar. 2020, doi: 10.1109/CVPRW50498.2020.00109.

[13] “ChatGPT.” Accessed: Nov. 22, 2024. [Online]. Available: https://chatgpt.com/

[14] Z. Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted

Windows,” Proceedings of the IEEE International Conference on Computer

Vision, pp. 9992–10002, Mar. 2021, doi: 10.1109/ICCV48922.2021.00986.

[15] “DALL·E: Creating images from text | OpenAI.” Accessed: Nov. 22, 2024.

[Online]. Available: https://openai.com/index/dall-e/

[16] “Sora | OpenAI.” Accessed: Nov. 22, 2024. [Online]. Available:

https://openai.com/index/sora/

[17] “Introducing Whisper | OpenAI.” Accessed: Nov. 22, 2024. [Online]. Available:

https://openai.com/index/whisper/

[18] “Suno.” Accessed: Nov. 22, 2024. [Online]. Available: https://suno.com/

[19] “ToonCrafter - Generador de Animaciones de Dibujos Animados por IA |

ToonCrafter | ToonCrafter.” Accessed: Nov. 22, 2024. [Online]. Available:

https://toon-crafter.com/es

[20] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point Sets

for 3D Classification and Segmentation,” Proceedings - 30th IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January,

pp. 77–85, Dec. 2016, doi: 10.1109/CVPR.2017.16.

[21] “Max Pooling Explained | Papers With Code.” Accessed: Nov. 05, 2024. [Online].

Available: https://paperswithcode.com/method/max-pooling

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 158

[22] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical Feature

Learning on Point Sets in a Metric Space,” Adv Neural Inf Process Syst, vol.

2017-December, pp. 5100–5109, Jun. 2017, Accessed: Nov. 05, 2024. [Online].

Available: https://arxiv.org/abs/1706.02413v1

[23] A. Vaswani et al., “Attention Is All You Need,” Adv Neural Inf Process Syst, vol.

2017-December, pp. 5999–6009, Jun. 2017, Accessed: Nov. 05, 2024. [Online].

Available: https://arxiv.org/abs/1706.03762v7

[24] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, “Point Transformer,” Proceedings

of the IEEE International Conference on Computer Vision, pp. 16239–16248,

Dec. 2020, doi: 10.1109/ICCV48922.2021.01595.

[25] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed

Representations of Words and Phrases and their Compositionality,” Oct. 2013,

Accessed: Nov. 05, 2024. [Online]. Available: http://arxiv.org/abs/1310.4546

[26] L. Landrieu and M. Simonovsky, “Large-scale Point Cloud Semantic

Segmentation with Superpoint Graphs,” Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pp. 4558–

4567, Nov. 2017, doi: 10.1109/CVPR.2018.00479.

[27] “City Generator by ProbableTrain.” Accessed: Nov. 05, 2024. [Online]. Available:

https://probabletrain.itch.io/city-generator

[28] “blender.org - Home of the Blender project - Free and Open 3D Creation

Software.” Accessed: Nov. 05, 2024. [Online]. Available:

https://www.blender.org/

[29] “Generador de ciudad 3D por procedimientos | Diseño de ciudades 3D para

entornos urbanos.” Accessed: Nov. 05, 2024. [Online]. Available:

https://www.esri.com/es-es/arcgis/products/arcgis-cityengine/overview

[30] “RailClone 4.3.1 | Reference & Documentation.” Accessed: Nov. 05, 2024.

[Online]. Available: https://docs.itoosoft.com/es/changelog/2021/05/10/railclone-

4_3_1

[31] “Plataforma de desarrollo en tiempo real de Unity | Motor de 3D, 2D, VR y AR.”

Accessed: Nov. 05, 2024. [Online]. Available: https://unity.com/es

[32] “The most powerful real-time 3D creation tool - Unreal Engine.” Accessed: Nov.

05, 2024. [Online]. Available: https://www.unrealengine.com/en-US

[33] “Inicio - Epic Games.” Accessed: Nov. 05, 2024. [Online]. Available:

https://www.epicgames.com/site/es-ES/home

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 159

[34] “GitHub - drprojects/superpoint_transformer: Official PyTorch implementation of

Superpoint Transformer introduced in [ICCV’23] ‘Efficient 3D Semantic

Segmentation with Superpoint Transformer’ and SuperCluster introduced in

[3DV’24 Oral] ‘Scalable 3D Panoptic Segmentation As Superpoint Graph

Clustering.’” Accessed: Nov. 05, 2024. [Online]. Available:

https://github.com/drprojects/superpoint_transformer

[35] D. Robert, H. Raguet, and L. Landrieu, “Efficient 3D Semantic Segmentation with

Superpoint Transformer,” Proceedings of the IEEE International Conference on

Computer Vision, pp. 17149–17158, Jun. 2023, doi:

10.1109/ICCV51070.2023.01577.

[36] I. Armeni et al., “3D Semantic Parsing of Large-Scale Indoor Spaces,” Computer

Vision and Pattern Recognition, vol. 2016-December, pp. 1534–1543, Dec.

2016, doi: 10.1109/CVPR.2016.170.

[37] N. Varney, V. K. Asari, and Q. Graehling, “DALES: A Large-scale Aerial LiDAR

Data Set for Semantic Segmentation,” IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops, vol. 2020-June, pp. 717–

726, Apr. 2020, doi: 10.1109/CVPRW50498.2020.00101.

[38] “GitHub - mathieuorhan/pointnet2_semantic: A pointnet++ fork, with focus on

semantic segmentation of differents datasets.” Accessed: Nov. 05, 2024.

[Online]. Available: https://github.com/mathieuorhan/pointnet2_semantic

[39] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner,

“ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes,” Proceedings

- 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2017, vol. 2017-January, pp. 2432–2443, Feb. 2017, doi:

10.1109/CVPR.2017.261.

[40] “Semantic3D - Data.” Accessed: Nov. 05, 2024. [Online]. Available:

https://www.semantic3d.net/view_dbase.php?chl=1

[41] A. Boulch, J. Guerry, B. Le Saux, and N. Audebert, “SnapNet: 3D point cloud

semantic labeling with 2D deep segmentation networks,” Computers and

Graphics (Pergamon), vol. 71, pp. 189–198, Apr. 2018, doi:

10.1016/j.cag.2017.11.010.

[42] “GitHub - hancyran/RepSurf: [CVPR 2022 Oral] Official implementation for

‘Surface Representation for Point Clouds.’” Accessed: Nov. 05, 2024. [Online].

Available: https://github.com/hancyran/RepSurf

Víctor Rodríguez Cano
Experimentación en framework para redes neuronales con

diferentes conjuntos de datos LiDAR reales y sintéticos

Escuela Politécnica Superior de Jaén 160

[43] H. Ran, J. Liu, and C. Wang, “Surface Representation for Point Clouds,”

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, vol. 2022-June, pp. 18920–18930, May 2022, doi:

10.1109/CVPR52688.2022.01837.

[44] “Oracle VirtualBox.” Accessed: Nov. 05, 2024. [Online]. Available:

https://www.virtualbox.org/

[45] “PyTorch.” Accessed: Nov. 05, 2024. [Online]. Available: https://pytorch.org/

[46] “InfoJobs - Bolsa de trabajo, ofertas de empleo.” Accessed: Nov. 06, 2024.

[Online]. Available: https://www.infojobs.net/

[47] “LAS file format - Wikipedia.” Accessed: Nov. 06, 2024. [Online]. Available:

https://en.wikipedia.org/wiki/LAS_file_format

[48] López-Ruiz, A., Ogáyar-Anguita, C.J., Segura-Sánchez, R.J., Enhancing LiDAR

point cloud generation with BRDF-based appearance modelling, ISPRS Journal

of Photogrammetry and Remote Sensing, 2024 (submitted, under revision)

